1
JEE Main 2021 (Online) 17th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Which of the following statements is correct for the function g($$\alpha$$) for $$\alpha$$ $$\in$$ R such that

$$g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $$
A
$$g(\alpha )$$ is a strictly increasing function
B
$$g(\alpha )$$ is an even function
C
$$g(\alpha )$$ has an inflection point at $$\alpha$$ = $$-$$$${1 \over 2}$$
D
$$g(\alpha )$$ is a strictly decreasing function
2
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Consider the integral
$$I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $$,
where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :
A
45 (e $$-$$ 1)
B
45 (e + 1)
C
9 (e + 1)
D
9 (e $$-$$ 1)
3
JEE Main 2021 (Online) 16th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let P(x) = x2 + bx + c be a quadratic polynomial with real coefficients such that $$\int_0^1 {P(x)dx} $$ = 1 and P(x) leaves remainder 5 when it is divided by (x $$-$$ 2). Then the value of 9(b + c) is equal to :
A
9
B
11
C
7
D
15
4
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \int\limits_0^x {{e^t}f(t)dt + {e^x}} $$ be a differentiable function for all x$$\in$$R. Then f(x) equals :
A
$${e^{({e^{x - 1}})}}$$
B
$$2{e^{{e^x}}} - 1$$
C
$$2{e^{{e^x} - 1}} - 1$$
D
$${e^{{e^x}}} - 1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12