1
JEE Main 2024 (Online) 9th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a circle passing through $$(2,0)$$ have its centre at the point $$(\mathrm{h}, \mathrm{k})$$. Let $$(x_{\mathrm{c}}, y_{\mathrm{c}})$$ be the point of intersection of the lines $$3 x+5 y=1$$ and $$(2+\mathrm{c}) x+5 \mathrm{c}^2 y=1$$. If $$\mathrm{h}=\lim _\limits{\mathrm{c} \rightarrow 1} x_{\mathrm{c}}$$ and $$\mathrm{k}=\lim _\limits{\mathrm{c} \rightarrow 1} y_{\mathrm{c}}$$, then the equation of the circle is :

A
$$5 x^2+5 y^2-4 x-2 y-12=0$$
B
$$25 x^2+25 y^2-20 x+2 y-60=0$$
C
$$25 x^2+25 y^2-2 x+2 y-60=0$$
D
$$5 x^2+5 y^2-4 x+2 y-12=0$$
2
JEE Main 2024 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the image of the point $$(-4,5)$$ in the line $$x+2 y=2$$ lies on the circle $$(x+4)^2+(y-3)^2=r^2$$, then $$r$$ is equal to:

A
2
B
3
C
4
D
1
3
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the circles $$C_1:(x-\alpha)^2+(y-\beta)^2=r_1^2$$ and $$C_2:(x-8)^2+\left(y-\frac{15}{2}\right)^2=r_2^2$$ touch each other externally at the point $$(6,6)$$. If the point $$(6,6)$$ divides the line segment joining the centres of the circles $$C_1$$ and $$C_2$$ internally in the ratio $$2: 1$$, then $$(\alpha+\beta)+4\left(r_1^2+r_2^2\right)$$ equals

A
130
B
110
C
145
D
125
4
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$\mathrm{P}(6,1)$$ be the orthocentre of the triangle whose vertices are $$\mathrm{A}(5,-2), \mathrm{B}(8,3)$$ and $$\mathrm{C}(\mathrm{h}, \mathrm{k})$$, then the point $$\mathrm{C}$$ lies on the circle :

A
$$x^2+y^2-74=0$$
B
$$x^2+y^2-65=0$$
C
$$x^2+y^2-61=0$$
D
$$x^2+y^2-52=0$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12