1
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \int\limits_0^x {{e^t}f(t)dt + {e^x}} $$ be a differentiable function for all x$$\in$$R. Then f(x) equals :
A
$${e^{({e^{x - 1}})}}$$
B
$$2{e^{{e^x}}} - 1$$
C
$$2{e^{{e^x} - 1}} - 1$$
D
$${e^{{e^x}}} - 1$$
2
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
For x > 0, if $$f(x) = \int\limits_1^x {{{{{\log }_e}t} \over {(1 + t)}}dt} $$, then $$f(e) + f\left( {{1 \over e}} \right)$$ is equal to :
A
$${1 \over 2}$$
B
$$-$$1
C
0
D
1
3
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_{ - \pi /2}^{\pi /2} {{{{{\cos }^2}x} \over {1 + {3^x}}}} dx$$ is :
A
$$2\pi $$
B
$${\pi \over 2}$$
C
$$4\pi $$
D
$${\pi \over 4}$$
4
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\sum\limits_{n = 1}^{100} {\int\limits_{n - 1}^n {{e^{x - [x]}}dx} } $$, where [ x ] is the greatest integer $$ \le $$ x, is :
A
100e
B
100(e $$-$$ 1)
C
100(1 + e)
D
100(1 $$-$$ e)
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12