Straight Lines and Pair of Straight Lines · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let the line x + y = 1 meet the axes of x and y at A and B, respectively. A right angled triangle AMN is inscribed in the triangle OAB, where O is the origin and the points M and N lie on the lines OB and AB, respectively. If the area of the triangle AMN is $ \frac{4}{9} $ of the area of the triangle OAB and AN : NB = $ \lambda : 1 $, then the sum of all possible value(s) of $ \lambda $ is:
Let ΔABC be a triangle formed by the lines 7x – 6y + 3 = 0, x + 2y – 31 = 0 and 9x – 2y – 19 = 0. Let the point (h, k) be the image of the centroid of ΔABC in the line 3x + 6y – 53 = 0. Then h2 + k2 + hk is equal to :
Two equal sides of an isosceles triangle are along $ -x + 2y = 4 $ and $ x + y = 4 $. If $ m $ is the slope of its third side, then the sum, of all possible distinct values of $ m $, is:
If A and B are the points of intersection of the circle $x^2 + y^2 - 8x = 0$ and the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ and a point P moves on the line $2x - 3y + 4 = 0$, then the centroid of $\Delta PAB$ lies on the line :
Let the points $\left(\frac{11}{2}, \alpha\right)$ lie on or inside the triangle with sides $x+y=11, x+2 y=16$ and $2 x+3 y=29$. Then the product of the smallest and the largest values of $\alpha$ is equal to :
Let the lines $3 x-4 y-\alpha=0,8 x-11 y-33=0$, and $2 x-3 y+\lambda=0$ be concurrent. If the image of the point $(1,2)$ in the line $2 x-3 y+\lambda=0$ is $\left(\frac{57}{13}, \frac{-40}{13}\right)$, then $|\alpha \lambda|$ is equal to
A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :
Let the triangle PQR be the image of the triangle with vertices $(1,3),(3,1)$ and $(2,4)$ in the line $x+2 y=2$. If the centroid of $\triangle \mathrm{PQR}$ is the point $(\alpha, \beta)$, then $15(\alpha-\beta)$ is equal to :
A variable line $$\mathrm{L}$$ passes through the point $$(3,5)$$ and intersects the positive coordinate axes at the points $$\mathrm{A}$$ and $$\mathrm{B}$$. The minimum area of the triangle $$\mathrm{OAB}$$, where $$\mathrm{O}$$ is the origin, is :
A ray of light coming from the point $$\mathrm{P}(1,2)$$ gets reflected from the point $$\mathrm{Q}$$ on the $$x$$-axis and then passes through the point $$R(4,3)$$. If the point $$S(h, k)$$ is such that $$P Q R S$$ is a parallelogram, then $$hk^2$$ is equal to:
If the line segment joining the points $$(5,2)$$ and $$(2, a)$$ subtends an angle $$\frac{\pi}{4}$$ at the origin, then the absolute value of the product of all possible values of $a$ is :
The equations of two sides $$\mathrm{AB}$$ and $$\mathrm{AC}$$ of a triangle $$\mathrm{ABC}$$ are $$4 x+y=14$$ and $$3 x-2 y=5$$, respectively. The point $$\left(2,-\frac{4}{3}\right)$$ divides the third side $$\mathrm{BC}$$ internally in the ratio $$2: 1$$, the equation of the side $$\mathrm{BC}$$ is
If the locus of the point, whose distances from the point $$(2,1)$$ and $$(1,3)$$ are in the ratio $$5: 4$$, is $$a x^2+b y^2+c x y+d x+e y+170=0$$, then the value of $$a^2+2 b+3 c+4 d+e$$ is equal to :
Let a variable line of slope $$m>0$$ passing through the point $$(4,-9)$$ intersect the coordinate axes at the points $$A$$ and $$B$$. The minimum value of the sum of the distances of $$A$$ and $$B$$ from the origin is
Let $$\mathrm{A}(-1,1)$$ and $$\mathrm{B}(2,3)$$ be two points and $$\mathrm{P}$$ be a variable point above the line $$\mathrm{AB}$$ such that the area of $$\triangle \mathrm{PAB}$$ is 10. If the locus of $$\mathrm{P}$$ is $$\mathrm{a} x+\mathrm{by}=15$$, then $$5 \mathrm{a}+2 \mathrm{~b}$$ is :
Let two straight lines drawn from the origin $$\mathrm{O}$$ intersect the line $$3 x+4 y=12$$ at the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ such that $$\triangle \mathrm{OPQ}$$ is an isosceles triangle and $$\angle \mathrm{POQ}=90^{\circ}$$. If $$l=\mathrm{OP}^2+\mathrm{PQ}^2+\mathrm{QO}^2$$, then the greatest integer less than or equal to $$l$$ is :
The vertices of a triangle are $$\mathrm{A}(-1,3), \mathrm{B}(-2,2)$$ and $$\mathrm{C}(3,-1)$$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
Let $$A(a, b), B(3,4)$$ and $$C(-6,-8)$$ respectively denote the centroid, circumcentre and orthocentre of a triangle. Then, the distance of the point $$P(2 a+3,7 b+5)$$ from the line $$2 x+3 y-4=0$$ measured parallel to the line $$x-2 y-1=0$$ is
Let $$\alpha, \beta, \gamma, \delta \in \mathbb{Z}$$ and let $$A(\alpha, \beta), B(1,0), C(\gamma, \delta)$$ and $$D(1,2)$$ be the vertices of a parallelogram $$\mathrm{ABCD}$$. If $$A B=\sqrt{10}$$ and the points $$\mathrm{A}$$ and $$\mathrm{C}$$ lie on the line $$3 y=2 x+1$$, then $$2(\alpha+\beta+\gamma+\delta)$$ is equal to
If $$x^2-y^2+2 h x y+2 g x+2 f y+c=0$$ is the locus of a point, which moves such that it is always equidistant from the lines $$x+2 y+7=0$$ and $$2 x-y+8=0$$, then the value of $$g+c+h-f$$ equals
A line passing through the point $$\mathrm{A}(9,0)$$ makes an angle of $$30^{\circ}$$ with the positive direction of $$x$$-axis. If this line is rotated about A through an angle of $$15^{\circ}$$ in the clockwise direction, then its equation in the new position is :
Let $$\mathrm{A}$$ be the point of intersection of the lines $$3 x+2 y=14,5 x-y=6$$ and $$\mathrm{B}$$ be the point of intersection of the lines $$4 x+3 y=8,6 x+y=5$$. The distance of the point $$P(5,-2)$$ from the line $$\mathrm{AB}$$ is
The distance of the point $$(2,3)$$ from the line $$2 x-3 y+28=0$$, measured parallel to the line $$\sqrt{3} x-y+1=0$$, is equal to
In a $$\triangle A B C$$, suppose $$y=x$$ is the equation of the bisector of the angle $$B$$ and the equation of the side $$A C$$ is $$2 x-y=2$$. If $$2 A B=B C$$ and the points $$A$$ and $$B$$ are respectively $$(4,6)$$ and $$(\alpha, \beta)$$, then $$\alpha+2 \beta$$ is equal to
Let $$\mathrm{R}$$ be the interior region between the lines $$3 x-y+1=0$$ and $$x+2 y-5=0$$ containing the origin. The set of all values of $$a$$, for which the points $$\left(a^2, a+1\right)$$ lie in $$R$$, is :
Let $$(\alpha, \beta)$$ be the centroid of the triangle formed by the lines $$15 x-y=82,6 x-5 y=-4$$ and $$9 x+4 y=17$$. Then $$\alpha+2 \beta$$ and $$2 \alpha-\beta$$ are the roots of the equation :
If the point $$\left(\alpha, \frac{7 \sqrt{3}}{3}\right)$$ lies on the curve traced by the mid-points of the line segments of the lines $$x \cos \theta+y \sin \theta=7, \theta \in\left(0, \frac{\pi}{2}\right)$$ between the co-ordinates axes, then $$\alpha$$ is equal to :
Let $$C(\alpha, \beta)$$ be the circumcenter of the triangle formed by the lines
$$4 x+3 y=69$$
$$4 y-3 x=17$$, and
$$x+7 y=61$$.
Then $$(\alpha-\beta)^{2}+\alpha+\beta$$ is equal to :
The straight lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$ pass through the origin and trisect the line segment of the line L : $$9 x+5 y=45$$ between the axes. If $$\mathrm{m}_{1}$$ and $$\mathrm{m}_{2}$$ are the slopes of the lines $$\mathrm{l_{1}}$$ and $$\mathrm{l_{2}}$$, then the point of intersection of the line $$\mathrm{y=\left(m_{1}+m_{2}\right)}x$$ with L lies on :
The combined equation of the two lines $$ax+by+c=0$$ and $$a'x+b'y+c'=0$$ can be written as
$$(ax+by+c)(a'x+b'y+c')=0$$.
The equation of the angle bisectors of the lines represented by the equation $$2x^2+xy-3y^2=0$$ is :
If the orthocentre of the triangle, whose vertices are (1, 2), (2, 3) and (3, 1) is $$(\alpha,\beta)$$, then the quadratic equation whose roots are $$\alpha+4\beta$$ and $$4\alpha+\beta$$, is :
Let $$B$$ and $$C$$ be the two points on the line $$y+x=0$$ such that $$B$$ and $$C$$ are symmetric with respect to the origin. Suppose $$A$$ is a point on $$y-2 x=2$$ such that $$\triangle A B C$$ is an equilateral triangle. Then, the area of the $$\triangle A B C$$ is :
A light ray emits from the origin making an angle 30$$^\circ$$ with the positive $$x$$-axis. After getting reflected by the line $$x+y=1$$, if this ray intersects $$x$$-axis at Q, then the abscissa of Q is :
Let $$m_{1}, m_{2}$$ be the slopes of two adjacent sides of a square of side a such that $$a^{2}+11 a+3\left(m_{1}^{2}+m_{2}^{2}\right)=220$$. If one vertex of the square is $$(10(\cos \alpha-\sin \alpha), 10(\sin \alpha+\cos \alpha))$$, where $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and the equation of one diagonal is $$(\cos \alpha-\sin \alpha) x+(\sin \alpha+\cos \alpha) y=10$$, then $$72\left(\sin ^{4} \alpha+\cos ^{4} \alpha\right)+a^{2}-3 a+13$$ is equal to :
Let $$\mathrm{A}(\alpha,-2), \mathrm{B}(\alpha, 6)$$ and $$\mathrm{C}\left(\frac{\alpha}{4},-2\right)$$ be vertices of a $$\triangle \mathrm{ABC}$$. If $$\left(5, \frac{\alpha}{4}\right)$$ is the circumcentre of $$\triangle \mathrm{ABC}$$, then which of the following is NOT correct about $$\triangle \mathrm{ABC}$$?
Let the circumcentre of a triangle with vertices A(a, 3), B(b, 5) and C(a, b), ab > 0 be P(1,1). If the line AP intersects the line BC at the point Q$$\left(k_{1}, k_{2}\right)$$, then $$k_{1}+k_{2}$$ is equal to :
The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and CA of a triangle ABC are $$2 x+y=0, x+\mathrm{p} y=39$$ and $$x-y=3$$ respectively and $$\mathrm{P}(2,3)$$ is its circumcentre. Then which of the following is NOT true?
Let $$A(1,1), B(-4,3), C(-2,-5)$$ be vertices of a triangle $$A B C, P$$ be a point on side $$B C$$, and $$\Delta_{1}$$ and $$\Delta_{2}$$ be the areas of triangles $$A P B$$ and $$A B C$$, respectively. If $$\Delta_{1}: \Delta_{2}=4: 7$$, then the area enclosed by the lines $$A P, A C$$ and the $$x$$-axis is :
A point $$P$$ moves so that the sum of squares of its distances from the points $$(1,2)$$ and $$(-2,1)$$ is 14. Let $$f(x, y)=0$$ be the locus of $$\mathrm{P}$$, which intersects the $$x$$-axis at the points $$\mathrm{A}$$, $$\mathrm{B}$$ and the $$y$$-axis at the points C, D. Then the area of the quadrilateral ACBD is equal to :
Let the point $$P(\alpha, \beta)$$ be at a unit distance from each of the two lines $$L_{1}: 3 x-4 y+12=0$$, and $$L_{2}: 8 x+6 y+11=0$$. If $$P$$ lies below $$L_{1}$$ and above $${ }{L_{2}}$$, then $$100(\alpha+\beta)$$ is equal to :
A line, with the slope greater than one, passes through the point $$A(4,3)$$ and intersects the line $$x-y-2=0$$ at the point B. If the length of the line segment $$A B$$ is $$\frac{\sqrt{29}}{3}$$, then $$B$$ also lies on the line :
Let $$\alpha$$1, $$\alpha$$2 ($$\alpha$$1 < $$\alpha$$2) be the values of $$\alpha$$ fo the points ($$\alpha$$, $$-$$3), (2, 0) and (1, $$\alpha$$) to be collinear. Then the equation of the line, passing through ($$\alpha$$1, $$\alpha$$2) and making an angle of $${\pi \over 3}$$ with the positive direction of the x-axis, is :
The distance of the origin from the centroid of the triangle whose two sides have the equations $$x - 2y + 1 = 0$$ and $$2x - y - 1 = 0$$ and whose orthocenter is $$\left( {{7 \over 3},{7 \over 3}} \right)$$ is :
The distance between the two points A and A' which lie on y = 2 such that both the line segments AB and A' B (where B is the point (2, 3)) subtend angle $${\pi \over 4}$$ at the origin, is equal to :
Let a triangle be bounded by the lines L1 : 2x + 5y = 10; L2 : $$-$$4x + 3y = 12 and the line L3, which passes through the point P(2, 3), intersects L2 at A and L1 at B. If the point P divides the line-segment AB, internally in the ratio 1 : 3, then the area of the triangle is equal to :
In an isosceles triangle ABC, the vertex A is (6, 1) and the equation of the base BC is 2x + y = 4. Let the point B lie on the line x + 3y = 7. If ($$\alpha$$, $$\beta$$) is the centroid of $$\Delta$$ABC, then 15($$\alpha$$ + $$\beta$$) is equal to :
Let R be the point (3, 7) and let P and Q be two points on the line x + y = 5 such that PQR is an equilateral triangle. Then the area of $$\Delta$$PQR is :
Let the area of the triangle with vertices A(1, $$\alpha$$), B($$\alpha$$, 0) and C(0, $$\alpha$$) be 4 sq. units. If the points ($$\alpha$$, $$-$$$$\alpha$$), ($$-$$$$\alpha$$, $$\alpha$$) and ($$\alpha$$2, $$\beta$$) are collinear, then $$\beta$$ is equal to :
x cosec $$\alpha$$ $$-$$ y sec $$\alpha$$ = k cot 2$$\alpha$$ and
x sin$$\alpha$$ + y cos$$\alpha$$ = k sin2$$\alpha$$
respectively, then k2 is equal to :
(a) reflection about the line y = x.
(b) translation through 2 units along the positive direction of x-axis.
(c) rotation through angle $${\pi \over 4}$$ about the origin in the anti-clockwise direction.
If the co-ordinates of the final position of the point P are $$\left( { - {1 \over {\sqrt 2 }},{7 \over {\sqrt 2 }}} \right)$$, then the value of 2a + b is equal to :
A line y = mx, m > 0, intersects lines AC and BC at point P and Q respectively. Let A1 and A2 be the areas of $$\Delta$$ABC and $$\Delta$$PQC respectively, such that A1 = 3A2, then the value of m is equal to :
(0, $$\pi $$) for which the points (1, 2) and (sin $$\theta $$, cos $$\theta $$) lie
on the same side of the line x + y = 1 is :
x – 2y + kz = 1
2x + y + z = 2
3x – y – kz = 3
has a solution (x,y,z), z $$ \ne $$ 0, then (x,y) lies on the straight line whose equation is :
Statement-1: The ratio $$PR$$ : $$RQ$$ equals $$2\sqrt 2 :\sqrt 5 $$
Statement-2: In any triangle, bisector of an angle divide the triangle into two similar triangles.
$$\left( {{a_1} - {a_2}} \right)x + \left( {{b_1} - {b_2}} \right)y + c = 0$$ , then the value of $$'c'$$ is :
$$a{x^2} + 2hxy + b{y^2} + 2gx + 2fy + c = 0$$
intersect on the $$y$$-axis then :
are perpendicular to each other for :
$$x$$ $$cos$$ $$\alpha + y\,\sin \alpha = p$$ where $$p$$ is constant is :
Numerical
Let the distance between two parallel lines be 5 units and a point $P$ lie between the lines at a unit distance from one of them. An equilateral triangle $P Q R$ is formed such that $Q$ lies on one of the parallel lines, while R lies on the other. Then $(Q R)^2$ is equal to _________.
Let a ray of light passing through the point $$(3,10)$$ reflects on the line $$2 x+y=6$$ and the reflected ray passes through the point $$(7,2)$$. If the equation of the incident ray is $$a x+b y+1=0$$, then $$a^2+b^2+3 a b$$ is equal to _________.
If the orthocentre of the triangle formed by the lines $$2 x+3 y-1=0, x+2 y-1=0$$ and $$a x+b y-1=0$$, is the centroid of another triangle, whose circumcentre and orthocentre respectively are $$(3,4)$$ and $$(-6,-8)$$, then the value of $$|a-b|$$ is _________.
Let $$A(-2,-1), B(1,0), C(\alpha, \beta)$$ and $$D(\gamma, \delta)$$ be the vertices of a parallelogram $$A B C D$$. If the point $$C$$ lies on $$2 x-y=5$$ and the point $$D$$ lies on $$3 x-2 y=6$$, then the value of $$|\alpha+\beta+\gamma+\delta|$$ is equal to ___________.
If the sum of squares of all real values of $$\alpha$$, for which the lines $$2 x-y+3=0,6 x+3 y+1=0$$ and $$\alpha x+2 y-2=0$$ do not form a triangle is $$p$$, then the greatest integer less than or equal to $$p$$ is _________.
If the line $$l_{1}: 3 y-2 x=3$$ is the angular bisector of the lines $$l_{2}: x-y+1=0$$ and $$l_{3}: \alpha x+\beta y+17=0$$, then $$\alpha^{2}+\beta^{2}-\alpha-\beta$$ is equal to _________.
Let the equations of two adjacent sides of a parallelogram $$\mathrm{ABCD}$$ be $$2 x-3 y=-23$$ and $$5 x+4 y=23$$. If the equation of its one diagonal $$\mathrm{AC}$$ is $$3 x+7 y=23$$ and the distance of A from the other diagonal is $$\mathrm{d}$$, then $$50 \mathrm{~d}^{2}$$ is equal to ____________.
The equations of the sides AB, BC and CA of a triangle ABC are : $$2x+y=0,x+py=21a,(a\pm0)$$ and $$x-y=3$$ respectively. Let P(2, a) be the centroid of $$\Delta$$ABC. Then (BC)$$^2$$ is equal to ___________.
The equations of the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ of a triangle $$\mathrm{ABC}$$ are $$2 x+y=0, x+\mathrm{p} y=15 \mathrm{a}$$ and $$x-y=3$$ respectively. If its orthocentre is $$(2, a),-\frac{1}{2}<\mathrm{a}<2$$, then $$\mathrm{p}$$ is equal to ______________.
A ray of light passing through the point P(2, 3) reflects on the x-axis at point A and the reflected ray passes through the point Q(5, 4). Let R be the point that divides the line segment AQ internally into the ratio 2 : 1. Let the co-ordinates of the foot of the perpendicular M from R on the bisector of the angle PAQ be ($$\alpha$$, $$\beta$$). Then, the value of 7$$\alpha$$ + 3$$\beta$$ is equal to ____________.
Let $$A\left( {{3 \over {\sqrt a }},\sqrt a } \right),\,a > 0$$, be a fixed point in the xy-plane. The image of A in y-axis be B and the image of B in x-axis be C. If $$D(3\cos \theta ,a\sin \theta )$$ is a point in the fourth quadrant such that the maximum area of $$\Delta$$ACD is 12 square units, then a is equal to ____________.
$${1 \over {\sqrt 5 }}$$ and $${2 \over {\sqrt 5 }}$$ from the lines 4x - 2y + $$\alpha $$ = 0
and 6x - 3y + $$\beta $$ = 0, respectively, then the sum of all possible values of $$\alpha $$ and $$\beta $$ is :