Statistics · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let $x_1, x_2, ..., x_{10}$ be ten observations such that $\sum\limits_{i=1}^{10} (x_i - 2) = 30$, $\sum\limits_{i=1}^{10} (x_i - \beta)^2 = 98$, $\beta > 2$, and their variance is $\frac{4}{5}$. If $\mu$ and $\sigma^2$ are respectively the mean and the variance of $2(x_1 - 1) + 4\beta, 2(x_2 - 1) + 4\beta, ..., 2(x_{10} - 1) + 4\beta$, then $\frac{\beta\mu}{\sigma^2}$ is equal to :
For a statistical data $\mathrm{x}_1, \mathrm{x}_2, \ldots, \mathrm{x}_{10}$ of 10 values, a student obtained the mean as 5.5 and $\sum_{i=1}^{10} x_i^2=371$. He later found that he had noted two values in the data incorrectly as 4 and 5 , instead of the correct values 6 and 8 , respectively. The variance of the corrected data is
Marks obtains by all the students of class 12 are presented in a freqency distribution with classes of equal width. Let the median of this grouped data be 14 with median class interval 12-18 and median class frequency 12. If the number of students whose marks are less than 12 is 18 , then the total number of students is :
If the variance of the frequency distribution
$$x$$ | $$c$$ | $$2c$$ | $$3c$$ | $$4c$$ | $$5c$$ | $$6c$$ |
---|---|---|---|---|---|---|
$$f$$ | 2 | 1 | 1 | 1 | 1 | 1 |
is 160, then the value of $$c\in N$$ is
The frequency distribution of the age of students in a class of 40 students is given below.
Age | 15 | 16 | 17 | 18 | 19 | 20 |
---|---|---|---|---|---|---|
No of Students | 5 | 8 | 5 | 12 | $$x$$ | $$y$$ |
If the mean deviation about the median is 1.25, then $$4x+5y$$ is equal to :
The mean and standard deviation of 20 observations are found to be 10 and 2 , respectively. On rechecking, it was found that an observation by mistake was taken 8 instead of 12. The correct standard deviation is
Let $$\alpha, \beta \in \mathbf{R}$$. Let the mean and the variance of 6 observations $$-3,4,7,-6, \alpha, \beta$$ be 2 and 23, respectively. The mean deviation about the mean of these 6 observations is :
Let the mean and the variance of 6 observations $$a, b, 68,44,48,60$$ be $$55$$ and $$194$$, respectively. If $$a>b$$, then $$a+3 b$$ is
Let M denote the median of the following frequency distribution
Class | 0 - 4 | 4 - 8 | 8 - 12 | 12 - 16 | 16 - 20 |
---|---|---|---|---|---|
Frequency | 3 | 9 | 10 | 8 | 6 |
Then 20M is equal to :
If the mean and variance of five observations are $$\frac{24}{5}$$ and $$\frac{194}{25}$$ respectively and the mean of the first four observations is $$\frac{7}{2}$$, then the variance of the first four observations in equal to
Let the mean of 6 observations $$1,2,4,5, \mathrm{x}$$ and $$\mathrm{y}$$ be 5 and their variance be 10 . Then their mean deviation about the mean is equal to :
Let sets A and B have 5 elements each. Let the mean of the elements in sets A and B be 5 and 8 respectively and the variance of the elements in sets A and B be 12 and 20 respectively. A new set C of 10 elements is formed by subtracting 3 from each element of $$\mathrm{A}$$ and adding 2 to each element of $$\mathrm{B}$$. Then the sum of the mean and variance of the elements of $$\mathrm{C}$$ is ___________.
Let $$\mu$$ be the mean and $$\sigma$$ be the standard deviation of the distribution
$${x_i}$$ | 0 | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|---|
$${f_i}$$ | $$k + 2$$ | $$2k$$ | $${k^2} - 1$$ | $${k^2} - 1$$ | $${k^2} + 1$$ | $$k - 3$$ |
where $$\sum f_{i}=62$$. If $$[x]$$ denotes the greatest integer $$\leq x$$, then $$\left[\mu^{2}+\sigma^{2}\right]$$ is equal to :
Let the mean and variance of 12 observations be $$\frac{9}{2}$$ and 4 respectively. Later on, it was observed that two observations were considered as 9 and 10 instead of 7 and 14 respectively. If the correct variance is $$\frac{m}{n}$$, where $$\mathrm{m}$$ and $$\mathrm{n}$$ are coprime, then $$\mathrm{m}+\mathrm{n}$$ is equal to :
The mean and variance of a set of 15 numbers are 12 and 14 respectively. The mean and variance of another set of 15 numbers are 14 and $$\sigma^{2}$$ respectively. If the variance of all the 30 numbers in the two sets is 13 , then $$\sigma^{2}$$ is equal to :
Let $$9=x_{1} < x_{2} < \ldots < x_{7}$$ be in an A.P. with common difference d. If the standard deviation of $$x_{1}, x_{2}..., x_{7}$$ is 4 and the mean is $$\bar{x}$$, then $$\bar{x}+x_{6}$$ is equal to :
The mean and variance of 5 observations are 5 and 8 respectively. If 3 observations are 1, 3, 5, then the sum of cubes of the remaining two observations is :
Three rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If $$\mu$$ and $$\sigma^2$$ represent mean and variance of X, respectively, then $$10(\mu^2+\sigma^2)$$ is equal to :
The mean and variance of the marks obtained by the students in a test are 10 and 4 respectively. Later, the marks of one of the students is increased from 8 to 12. If the new mean of the marks is 10.2, then their new variance is equal to :
Let the six numbers $$\mathrm{a_1,a_2,a_3,a_4,a_5,a_6}$$, be in A.P. and $$\mathrm{a_1+a_3=10}$$. If the mean of these six numbers is $$\frac{19}{2}$$ and their variance is $$\sigma^2$$, then 8$$\sigma^2$$ is equal to :
If the mean deviation about median for the numbers 3, 5, 7, 2k, 12, 16, 21, 24, arranged in the ascending order, is 6 then the median is :
The number of values of a $$\in$$ N such that the variance of 3, 7, 12, a, 43 $$-$$ a is a natural number is :
Let the mean and the variance of 5 observations x1, x2, x3, x4, x5 be $${24 \over 5}$$ and $${194 \over 25}$$ respectively. If the mean and variance of the first 4 observation are $${7 \over 2}$$ and a respectively, then (4a + x5) is equal to:
The mean and variance of the data 4, 5, 6, 6, 7, 8, x, y, where x < y, are 6 and $${9 \over 4}$$ respectively. Then $${x^4} + {y^2}$$ is equal to :
The mean and standard deviation of 50 observations are 15 and 2 respectively. It was found that one incorrect observation was taken such that the sum of correct and incorrect observations is 70. If the correct mean is 16, then the correct variance is equal to :
The mean of the numbers a, b, 8, 5, 10 is 6 and their variance is 6.8. If M is the mean deviation of the numbers about the mean, then 25 M is equal to :
$$\matrix{ {x:} & {{x_1} = 2} & {{x_2} = 6} & {{x_3} = 8} & {{x_4} = 9} \cr {f:} & 4 & 4 & \alpha & \beta \cr } $$
be 6 and 6.8 respectively. If x3 is changed from 8 to 7, then the mean for the new data will be :
respectively, then (a $$-$$ b)2 is equal to :
(n, a > 1) then the standard deviation of n
observations x1 , x2 , ..., xn is :
data 3, 5, 7, a, b are 5 and 2 respectively, then a and b are the roots of the equation :
$$\sum\limits_{i = 1}^{10} {\left( {{x_i} - p} \right)} = 3$$ and $$\sum\limits_{i = 1}^{10} {{{\left( {{x_i} - p} \right)}^2}} = 9$$
where 0 $$ \ne $$ p $$ \in $$ R, then the standard deviation of these observations is :
Variate (x) : x1 x2 x3 .... x15
Frequency (f) : f1 f2 f3 ...... f15
where 0 < x1 < x2 < x3 < ... < x15 = 10 and
$$\sum\limits_{i = 1}^{15} {{f_i}} $$ > 0, the standard deviation cannot be :
Y = {ax + b: x $$ \in $$ X and a, b $$ \in $$ R, a > 0}. If mean
and variance of elements of Y are 17 and 216
respectively then a + b is equal to :
equations, $$\sum\limits_{i = 1}^{10} {\left( {{x_1} - 5} \right)} $$ = 10 and $$\sum\limits_{i = 1}^{10} {{{\left( {{x_1} - 5} \right)}^2}} $$ = 40.
If $$\mu $$ and $$\lambda $$ are the mean and the variance of the
observations, x1 – 3, x2 – 3, ...., x10 – 3, then
the ordered pair ($$\mu $$, $$\lambda $$) is equal to :
Marks | 2 | 3 | 5 | 7 |
---|---|---|---|---|
Frequency | (x + 1)2 | 2x - 5 | x2 - 3x | x |
then the mean of the marks is
45, 54, 41, 57, 43.
His score is not known for the sixth test. If the mean score is 48 in the six tests, then the standard deviation of the marks in six tests is
If $$\sum\limits_{i = 1}^n {{{\left( {{x_i} + 1} \right)}^2}} = 9n$$ and
$$\sum\limits_{i = 1}^n {{{\left( {{x_i} - 1} \right)}^2}} = 5n,$$
then the standard deviation of this data is :
$$\sum\limits_{i = 1}^9 {{{\left( {{x_i} - 5} \right)}^2}} = 45$$, then the standard deviation of the 9 items
$${x_1},{x_2},.......,{x_9}$$ is
Statement 1 : Variance of 2x1, 2x2,......., 2xn is 4$${\sigma ^2}$$.
Statement 2 : : Arithmetic mean of 2x1, 2x2,......, 2xn is 4$$\overline x $$.
Statement - 2 : The sum of first n natural numbers is $${{n\left( {n + 1} \right)} \over 2}$$ and the sum of squares of first n natural numbers is $${{n\left( {n + 1} \right)\left( {2n + 1} \right)} \over 6}$$
$$\sum {x_i^2} = 400$$ and $$\sum {{x_i}} = 80$$. Then a possible value of n among the following is
(a) Mode can be computed from histogram
(b) Median is not independent of change of scale
(c) Variance is independent of change of origin and scale.
Which of these is/are correct?
$$\sum {{x^2}} = 2830$$, $$\sum x = 170$$
One observation that was 20 was found to be wrong and was replaced by the correct value 30. Then the corrected variance is :
Numerical
The variance of the numbers $8,21,34,47, \ldots, 320$ is _______.
Let $$\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathbf{N}$$ and $$\mathrm{a}< \mathrm{b}< \mathrm{c}$$. Let the mean, the mean deviation about the mean and the variance of the 5 observations $$9,25, a, b, c$$ be 18, 4 and $$\frac{136}{5}$$, respectively. Then $$2 a+b-c$$ is equal to ________
Let the mean and the standard deviation of the probability distribution
$$\mathrm{X}$$ | $$\alpha$$ | 1 | 0 | $$-$$3 |
---|---|---|---|---|
$$\mathrm{P(X)}$$ | $$\frac{1}{3}$$ | $$\mathrm{K}$$ | $$\frac{1}{6}$$ | $$\frac{1}{4}$$ |
be $$\mu$$ and $$\sigma$$, respectively. If $$\sigma-\mu=2$$, then $$\sigma+\mu$$ is equal to ________.
The variance $$\sigma^2$$ of the data
$$x_i$$ | 0 | 1 | 5 | 6 | 10 | 12 | 17 |
---|---|---|---|---|---|---|---|
$$f_i$$ | 3 | 2 | 3 | 2 | 6 | 3 | 3 |
is _________.
If the mean and variance of the data $$65,68,58,44,48,45,60, \alpha, \beta, 60$$ where $$\alpha> \beta$$, are 56 and 66.2 respectively, then $$\alpha^2+\beta^2$$ is equal to _________.
The mean and standard deviation of 15 observations were found to be 12 and 3 respectively. On rechecking it was found that an observation was read as 10 in place of 12 . If $$\mu$$ and $$\sigma^2$$ denote the mean and variance of the correct observations respectively, then $$15\left(\mu+\mu^2+\sigma^2\right)$$ is equal to __________.
The mean and standard deviation of the marks of 10 students were found to be 50 and 12 respectively. Later, it was observed that two marks 20 and 25 were wrongly read as 45 and 50 respectively. Then the correct variance is _________
Let the mean of the data
$$x$$ | 1 | 3 | 5 | 7 | 9 |
---|---|---|---|---|---|
Frequency ($$f$$) | 4 | 24 | 28 | $$\alpha$$ | 8 |
be 5. If $$m$$ and $$\sigma^{2}$$ are respectively the mean deviation about the mean and the variance of the data, then $$\frac{3 \alpha}{m+\sigma^{2}}$$ is equal to __________
Let the positive numbers $$a_{1}, a_{2}, a_{3}, a_{4}$$ and $$a_{5}$$ be in a G.P. Let their mean and variance be $$\frac{31}{10}$$ and $$\frac{m}{n}$$ respectively, where $$m$$ and $$n$$ are co-prime. If the mean of their reciprocals is $$\frac{31}{40}$$ and $$a_{3}+a_{4}+a_{5}=14$$, then $$m+n$$ is equal to ___________.
If the mean of the frequency distribution
Class : | 0-10 | 10-20 | 20-30 | 30-40 | 40-50 |
---|---|---|---|---|---|
Frequency : | 2 | 3 | $$x$$ | 5 | 4 |
is 28, then its variance is __________.
Let the mean and variance of 8 numbers $$x, y, 10,12,6,12,4,8$$ be $$9$$ and $$9.25$$ respectively. If $$x > y$$, then $$3 x-2 y$$ is equal to _____________.
If the mean and variance of the frequency distribution
$$x_i$$ | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 |
---|---|---|---|---|---|---|---|---|
$$f_i$$ | 4 | 4 | $$\alpha$$ | 15 | 8 | $$\beta$$ | 4 | 5 |
are 9 and 15.08 respectively, then the value of $$\alpha^2+\beta^2-\alpha\beta$$ is ___________.
If the variance of the frequency distribution
$$x_i$$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Frequency $$f_i$$ | 3 | 6 | 16 | $$\alpha$$ | 9 | 5 | 6 |
is 3, then $$\alpha$$ is equal to _____________.
The mean and variance of 7 observations are 8 and 16 respectively. If one observation 14 is omitted and a and b are respectively mean and variance of remaining 6 observation, then $$\mathrm{a+3 b-5}$$ is equal to ___________.
Let $$X=\{11,12,13,....,40,41\}$$ and $$Y=\{61,62,63,....,90,91\}$$ be the two sets of observations. If $$\overline x $$ and $$\overline y $$ are their respective means and $$\sigma^2$$ is the variance of all the observations in $$\mathrm{X\cup Y}$$, then $$\left| {\overline x + \overline y - {\sigma ^2}} \right|$$ is equal to ____________.
Let the mean and the variance of 20 observations $$x_{1}, x_{2}, \ldots, x_{20}$$ be 15 and 9 , respectively. For $$\alpha \in \mathbf{R}$$, if the mean of $$\left(x_{1}+\alpha\right)^{2},\left(x_{2}+\alpha\right)^{2}, \ldots,\left(x_{20}+\alpha\right)^{2}$$ is 178 , then the square of the maximum value of $$\alpha$$ is equal to ________.
Let $$x_{1}, x_{2}, x_{3}, \ldots, x_{20}$$ be in geometric progression with $$x_{1}=3$$ and the common ratio $$\frac{1}{2}$$. A new data is constructed replacing each $$x_{i}$$ by $$\left(x_{i}-i\right)^{2}$$. If $$\bar{x}$$ is the mean of new data, then the greatest integer less than or equal to $$\bar{x}$$ is ____________.
The mean and variance of 10 observations were calculated as 15 and 15 respectively by a student who took by mistake 25 instead of 15 for one observation. Then, the correct standard deviation is _____________.
The mean and standard deviation of 40 observations are 30 and 5 respectively. It was noticed that two of these observations 12 and 10 were wrongly recorded. If $$\sigma$$ is the standard deviation of the data after omitting the two wrong observations from the data, then $$38 \sigma^{2}$$ is equal to ___________.
Suppose a class has 7 students. The average marks of these students in the mathematics examination is 62, and their variance is 20. A student fails in the examination if he/she gets less than 50 marks, then in worst case, the number of students can fail is _________.
The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____________.
If the mean deviation about the mean of the numbers 1, 2, 3, .........., n, where n is odd, is $${{5(n + 1)} \over n}$$, then n is equal to ______________.
Class : | 10-20 | 20-30 | 30-40 | 40-50 | 50-60 |
---|---|---|---|---|---|
Frequency : | $$\alpha $$ | 110 | 54 | 30 | $$\beta $$ |
If the sum of all frequencies is 584 and median is 45, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to _______________.
Class : | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 |
---|---|---|---|---|---|
Frequency : | $$a $$ | $$b$$ | 12 | 9 | 5 |
If mean = $${{309} \over {22}}$$ and median = 14, then the value (a $$-$$ b)2 is equal to _____________.
Size | Mean | Variance | |
---|---|---|---|
Observation I | 10 | 2 | 2 |
Observation II | n | 3 | 1 |
If the variance of the combined set of these two observations is $${{17} \over 9}$$, then the value of n is equal to ___________.
that $$\sum\limits_{i = 1}^{18} {({X_i} - } \alpha ) = 36$$ and $$\sum\limits_{i = 1}^{18} {({X_i} - } \beta {)^2} = 90$$, where $$\alpha$$ and $$\beta$$ are distinct real numbers. If the standard deviation of these observations is 1, then the value of | $$\alpha$$ $$-$$ $$\beta$$ | is ____________.
0, 2, 4, 8,....., 2n with frequencies
nC0 , nC1 , nC2 ,...., nCn respectively. If the
mean of this data is $${{728} \over {{2^n}}}$$, then n is equal to _________ .
Class : 10–20 20–30 30–40
Frequency : 2 x 2
is 50, then x is equal to____
b1 , b2 , b3 ,....,b11 is 90, then the common difference of this A.P. is_______.