1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of integral terms in the expansion of $ \left( {5^\frac{1}{2}} + 7^\frac{1}{8} \right)^{1016} $ is:

A

127

B

128

C

130

D

129

2
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The remainder when $\left((64)^{(64)}\right)^{(64)}$ is divided by 7 is equal to

A
4
B
6
C
3
D
1
3
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $1^2 \cdot\left({ }^{15} C_1\right)+2^2 \cdot\left({ }^{15} C_2\right)+3^2 \cdot\left({ }^{15} C_3\right)+\ldots+15^2 \cdot\left({ }^{15} C_{15}\right)=2^m \cdot 3^n \cdot 5^k$, where $m, n, k \in \mathbf{N}$, then $\mathrm{m}+\mathrm{n}+\mathrm{k}$ is equal to :

A
20
B
19
C
18
D
21
4
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For an integer $n \geq 2$, if the arithmetic mean of all coefficients in the binomial expansion of $(x+y)^{2 n-3}$ is 16 , then the distance of the point $\mathrm{P}\left(2 n-1, n^2-4 n\right)$ from the line $x+y=8$ is

A
$\sqrt{2}$
B
$2 \sqrt{2}$
C
$5 \sqrt{2}$
D
$3 \sqrt{2}$
JEE Main Subjects
EXAM MAP