1
JEE Main 2025 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The value of $ \cot^{-1} \left( \frac{\sqrt{1 + \tan^2(2)} - 1}{\tan(2)} \right) - \cot^{-1} \left( \frac{\sqrt{1 + \tan^2\left(\frac{1}{2}\right)} + 1}{\tan\left(\frac{1}{2}\right)} \right) $ is equal to

A

$ \pi - \frac{3}{2} $

B

$ \pi + \frac{5}{2} $

C

$ \pi - \frac{5}{4} $

D

$ \pi + \frac{3}{2} $

2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

The sum of the infinite series $\cot ^{-1}\left(\frac{7}{4}\right)+\cot ^{-1}\left(\frac{19}{4}\right)+\cot ^{-1}\left(\frac{39}{4}\right)+\cot ^{-1}\left(\frac{67}{4}\right)+\ldots$. is :

A
$\frac{\pi}{2}+\cot ^{-1}\left(\frac{1}{2}\right)$
B
$\frac{\pi}{2}-\cot ^{-1}\left(\frac{1}{2}\right)$
C
$\frac{\pi}{2}-\tan ^{-1}\left(\frac{1}{2}\right)$
D
$\frac{\pi}{2}+\tan ^{-1}\left(\frac{1}{2}\right)$
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Considering the principal values of the inverse trigonometric functions, $\sin ^{-1}\left(\frac{\sqrt{3}}{2} x+\frac{1}{2} \sqrt{1-x^2}\right),-\frac{1}{2}< x<\frac{1}{\sqrt{2}}$, is equal to

A
$\frac{-5 \pi}{6}-\sin ^{-1} x$
B
$\frac{5 \pi}{6}-\sin ^{-1} x$
C
$\frac{\pi}{6}+\sin ^{-1} x$
D
$\frac{\pi}{4}+\sin ^{-1} x$
4
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:

A

$(-\infty, \infty)$

B

$(-\infty, \infty)- \{0\}$

C

$(-\infty, -1] \cup [0, \infty)$

D

$(-\infty, -1] \cup [1, \infty)$

JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12