Functions · Mathematics · JEE Main
MCQ (Single Correct Answer)
If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:
If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, \mathrm{x} \in \mathbb{R}$, then $\sum_\limits{\mathrm{k}=1}^{81} f\left(\frac{\mathrm{k}}{82}\right)$ is equal to
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is
The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :
Let $f(x)=\frac{2^{x+2}+16}{2^{2 x+1}+2^{x+4}+32}$. Then the value of $8\left(f\left(\frac{1}{15}\right)+f\left(\frac{2}{15}\right)+\ldots+f\left(\frac{59}{15}\right)\right)$ is equal to
Let $f(x)=\log _{\mathrm{e}} x$ and $g(x)=\frac{x^4-2 x^3+3 x^2-2 x+2}{2 x^2-2 x+1}$. Then the domain of $f \circ g$ is
Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,9,16\}$. Then the number of many-one functions $f: \mathrm{A} \rightarrow \mathrm{B}$ such that $1 \in f(\mathrm{~A})$ is equal to :
Let the range of the function $$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \mathbb{R}$$ be $$[a, b]$$. If $$\alpha$$ and $$\beta$$ ar respectively the A.M. and the G.M. of $$a$$ and $$b$$, then $$\frac{\alpha}{\beta}$$ is equal to
If the domain of the function $$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$$ is $$\mathbf{R}-(\alpha, \beta)$$, then $$12 \alpha \beta$$ is equal to :
Let $$f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$$ where $$\mathrm{a}> 0$$ and $$\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$$. Then the function $$g:[-a, a] \rightarrow[-a, a]$$ is
If the function $$f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$$ attains the maximum value at $$x=\frac{1}{\mathrm{e}}$$ then :
Let $$f(x)=\frac{1}{7-\sin 5 x}$$ be a function defined on $$\mathbf{R}$$. Then the range of the function $$f(x)$$ is equal to :
The function $$f(x)=\frac{x^2+2 x-15}{x^2-4 x+9}, x \in \mathbb{R}$$ is
Let $$f, g: \mathbf{R} \rightarrow \mathbf{R}$$ be defined as :
$$f(x)=|x-1| \text { and } g(x)= \begin{cases}\mathrm{e}^x, & x \geq 0 \\ x+1, & x \leq 0 .\end{cases}$$
Then the function $$f(g(x))$$ is
Let $$A=\{1,3,7,9,11\}$$ and $$B=\{2,4,5,7,8,10,12\}$$. Then the total number of one-one maps $$f: A \rightarrow B$$, such that $$f(1)+f(3)=14$$, is :
$f(x)=\frac{\sqrt{x^2-25}}{\left(4-x^2\right)}+\log _{10}\left(x^2+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$, then $\alpha^2+\beta^3$ is equal to :
$f(x)=\left\{\begin{array}{ll}\log _{\mathrm{e}} x, & x>0 \\ \mathrm{e}^{-x}, & x \leq 0\end{array}\right.$ and
$g(x)=\left\{\begin{array}{ll}x, & x \geqslant 0 \\ \mathrm{e}^x, & x<0\end{array}\right.$. Then, gof : $\mathbf{R} \rightarrow \mathbf{R}$ is :
If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to
If the domain of the function $$f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$$ is $$(\alpha, \beta]$$, then the value of $$5 \beta-4 \alpha$$ is equal to
If the domain of the function $$f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _e(3-x)\right\}^{-1}$$ is $$[-\alpha, \beta)-\{\gamma\}$$, then $$\alpha+\beta+\gamma$$ is equal to :
If $$f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$$, then range of $$(f o g)(x)$$ is
Let $$f: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}$$ and $$g: \mathbf{R}-\left\{\frac{-5}{2}\right\} \rightarrow \mathbf{R}$$ be defined as $$f(x)=\frac{2 x+3}{2 x+1}$$ and $$g(x)=\frac{|x|+1}{2 x+5}$$. Then, the domain of the function fog is :
The range of $$f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$$ is
For $$x \in \mathbb{R}$$, two real valued functions $$f(x)$$ and $$g(x)$$ are such that, $$g(x)=\sqrt{x}+1$$ and $$f \circ g(x)=x+3-\sqrt{x}$$. Then $$f(0)$$ is equal to
Let $$\mathrm{D}$$ be the domain of the function $$f(x)=\sin ^{-1}\left(\log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right)\right)$$. If the range of the function $$\mathrm{g}: \mathrm{D} \rightarrow \mathbb{R}$$ defined by $$\mathrm{g}(x)=x-[x],([x]$$ is the greatest integer function), is $$(\alpha, \beta)$$, then $$\alpha^{2}+\frac{5}{\beta}$$ is equal to
The domain of the function $$f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}$$ is : ( where $$[\mathrm{x}]$$ denotes the greatest integer less than or equal to $$x$$ )
If $$f(x) = {{(\tan 1^\circ )x + {{\log }_e}(123)} \over {x{{\log }_e}(1234) - (\tan 1^\circ )}},x > 0$$, then the least value of $$f(f(x)) + f\left( {f\left( {{4 \over x}} \right)} \right)$$ is :
Let the sets A and B denote the domain and range respectively of the function $$f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$$, where $$\lceil x\rceil$$ denotes the smallest integer greater than or equal to $$x$$. Then among the statements
(S1) : $$A \cap B=(1, \infty)-\mathbb{N}$$ and
(S2) : $$A \cup B=(1, \infty)$$
Let $$f:\mathbb{R}-{0,1}\to \mathbb{R}$$ be a function such that $$f(x)+f\left(\frac{1}{1-x}\right)=1+x$$. Then $$f(2)$$ is equal to
Let $$f(x) = \left| {\matrix{ {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \sin 2x} \cr } } \right|,\,x \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$. If $$\alpha$$ and $$\beta$$ respectively are the maximum and the minimum values of $$f$$, then
defined as $f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}$.
Then range of $f$ is
$f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$,
where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is :
Consider a function $$f:\mathbb{N}\to\mathbb{R}$$, satisfying $$f(1)+2f(2)+3f(3)+....+xf(x)=x(x+1)f(x);x\ge2$$ with $$f(1)=1$$. Then $$\frac{1}{f(2022)}+\frac{1}{f(2028)}$$ is equal to
The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is
Let $$f:R \to R$$ be a function such that $$f(x) = {{{x^2} + 2x + 1} \over {{x^2} + 1}}$$. Then
The number of functions
$$f:\{ 1,2,3,4\} \to \{ a \in Z|a| \le 8\} $$
satisfying $$f(n) + {1 \over n}f(n + 1) = 1,\forall n \in \{ 1,2,3\} $$ is
Let $$f:\mathbb{R}\to\mathbb{R}$$ be a function defined by $$f(x) = {\log _{\sqrt m }}\{ \sqrt 2 (\sin x - \cos x) + m - 2\} $$, for some $$m$$, such that the range of $$f$$ is [0, 2]. Then the value of $$m$$ is _________
Let $$f(x) = 2{x^n} + \lambda ,\lambda \in R,n \in N$$, and $$f(4) = 133,f(5) = 255$$. Then the sum of all the positive integer divisors of $$(f(3) - f(2))$$ is
Let $$f(x)$$ be a function such that $$f(x+y)=f(x).f(y)$$ for all $$x,y\in \mathbb{N}$$. If $$f(1)=3$$ and $$\sum\limits_{k = 1}^n {f(k) = 3279} $$, then the value of n is
If $$f(x) = {{{2^{2x}}} \over {{2^{2x}} + 2}},x \in \mathbb{R}$$, then $$f\left( {{1 \over {2023}}} \right) + f\left( {{2 \over {2023}}} \right)\, + \,...\, + \,f\left( {{{2022} \over {2023}}} \right)$$ is equal to
$$ \text { Let } f(x)=a x^{2}+b x+c \text { be such that } f(1)=3, f(-2)=\lambda \text { and } $$ $$f(3)=4$$. If $$f(0)+f(1)+f(-2)+f(3)=14$$, then $$\lambda$$ is equal to :
Let $$\alpha, \beta$$ and $$\gamma$$ be three positive real numbers. Let $$f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$$ and $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. If $$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$$ be in arithmetic progression with mean zero, then the value of $$f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$$ is equal to :
Let $$f, g: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$$ be functions defined by $$f(a)=\alpha$$, where $$\alpha$$ is the maximum of the powers of those primes $$p$$ such that $$p^{\alpha}$$ divides $$a$$, and $$g(a)=a+1$$, for all $$a \in \mathbb{N}-\{1\}$$. Then, the function $$f+g$$ is
The number of bijective functions $$f:\{1,3,5,7, \ldots, 99\} \rightarrow\{2,4,6,8, \ldots .100\}$$, such that $$f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . . f(99)$$, is ____________.
The total number of functions,
$$ f:\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\} $$ such that $$f(1)+f(2)=f(3)$$, is equal to :
Let a function f : N $$\to$$ N be defined by
$$f(n) = \left[ {\matrix{ {2n,} & {n = 2,4,6,8,......} \cr {n - 1,} & {n = 3,7,11,15,......} \cr {{{n + 1} \over 2},} & {n = 1,5,9,13,......} \cr } } \right.$$
then, f is
Let f : R $$\to$$ R be defined as f (x) = x $$-$$ 1 and g : R $$-$$ {1, $$-$$1} $$\to$$ R be defined as $$g(x) = {{{x^2}} \over {{x^2} - 1}}$$.
Then the function fog is :
Let $$f(x) = {{x - 1} \over {x + 1}},\,x \in R - \{ 0, - 1,1\} $$. If $${f^{n + 1}}(x) = f({f^n}(x))$$ for all n $$\in$$ N, then $${f^6}(6) + {f^7}(7)$$ is equal to :
Let f : N $$\to$$ R be a function such that $$f(x + y) = 2f(x)f(y)$$ for natural numbers x and y. If f(1) = 2, then the value of $$\alpha$$ for which
$$\sum\limits_{k = 1}^{10} {f(\alpha + k) = {{512} \over 3}({2^{20}} - 1)} $$
holds, is :
Let $$f:R \to R$$ and $$g:R \to R$$ be two functions defined by $$f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$$ and $$g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$$. Then, for which of the following range of $$\alpha$$, the inequality $$f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$$ holds ?
$$f(x) = {\log _{\sqrt 5 }}\left( {3 + \cos \left( {{{3\pi } \over 4} + x} \right) + \cos \left( {{\pi \over 4} + x} \right) + \cos \left( {{\pi \over 4} - x} \right) - \cos \left( {{{3\pi } \over 4} - x} \right)} \right)$$ is :
g(3n + 1) = 3n + 2,
g(3n + 2) = 3n + 3,
g(3n + 3) = 3n + 1, for all n $$\ge$$ 0.
Then which of the following statements is true?
Let g : R $$ \to $$ R be given as g(x) = 2x $$-$$ 3. Then, the sum of all the values of x for which f$$-$$1(x) + g$$-$$1(x) = $${{13} \over 2}$$ is equal to :
$$f(x) = {{\cos e{c^{ - 1}}x} \over {\sqrt {x - [x]} }}$$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :
f + g, f $$-$$ g, f/g, g/f, g $$-$$ f where $$(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$$
function f(x) = (4a $$-$$ 3)(x + loge 5) + 2(a $$-$$ 7) cot$$\left( {{x \over 2}} \right)$$ sin2$$\left( {{x \over 2}} \right)$$, x $$\ne$$ 2n$$\pi$$, n$$\in$$N has critical points, is :
$$f(k) = \left\{ {\matrix{ {k + 1} & {if\,k\,is\,odd} \cr k & {if\,k\,is\,even} \cr } } \right.$$
Then the number of possible functions $$g:A \to A$$ such that $$gof = f$$ is :
function, $$f:R - \left\{ { - a} \right\} \to R$$ be defined by
$$f(x) = {{a - x} \over {a + x}}$$. Further suppose that for any real number $$x \ne - a$$ and $$f(x) \ne - a$$,
(fof)(x) = x. Then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
f(x + y) = f(x) + f(y) $$\forall $$ x, y $$ \in $$ R. If f(1) = 2 and
g(n) = $$\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)} $$, n $$ \in $$ N then the value of n, for which g(n) = 20, is :
If $$f(x)=\left| {\matrix{ {x + a} & {x + 2} & {x + 1} \cr {x + b} & {x + 3} & {x + 2} \cr {x + c} & {x + 4} & {x + 3} \cr } } \right|$$, then:
$$f(x) = {{x\left[ x \right]} \over {1 + {x^2}}}$$ , where [x] denotes the greatest integer $$ \le $$ x. Then the range of ƒ is
f(x) = $${{{8^{2x}} - {8^{ - 2x}}} \over {{8^{2x}} + {8^{ - 2x}}}}$$, x $$ \in $$ (-1, 1), is :
(goƒ) (x) = 4x2 - 10x + 5, then ƒ$$\left( {{5 \over 4}} \right)$$ is equal to:
$$f(x) = {1 \over {4 - {x^2}}} + {\log _{10}}({x^3} - x)$$ is
ƒ(x) = $${{{x^2}} \over {1 - {x^2}}}$$ , is surjective, then A is equal to
ƒ(x + y) = ƒ(x)ƒ(y) for all natural numbers x, y and ƒ(1) = 2. then the natural number 'a' is
ƒ(x) = ƒ1 (x) + ƒ2 (x), where ƒ1 (x) is an even function of ƒ2 (x) is an odd function.
Then ƒ1 (x + y) + ƒ1 (x – y) equals
f(n) = $$\left\{ {\matrix{ {{{n + 1} \over 2};} & {if\,\,n\,\,is\,\,odd} \cr {{n \over 2};} & {if\,\,n\,\,is\,\,even} \cr } \,\,} \right.$$;
and g(n) = n $$-$$($$-$$ 1)n.
Then fog is -
Define a function $$f$$ : A $$ \to $$ R as $$f(x)$$ = $${{2x} \over {x - 1}}$$,
then $$f$$ is :
and f3 (x) = $$1 \over {1 - x}$$ be three given
functions. If a function, J(x) satisfies
(f2 o J o f1) (x) = f3 (x) then J(x) is equal to :
$$f\left( x \right) = {x \over {1 + {x^2}}}$$, is
$$a$$ + b + c = 3 and $$f$$(x + y) = $$f$$(x) + $$f$$(y) + xy, $$\forall x,y \in R,$$
then $$\sum\limits_{n = 1}^{10} {f(n)} $$ is equal to
fn+1 (x) = f0(fn(x)), n = 0, 1, 2, . . . .
Then the value of f100(3) + f1$$\left( {{2 \over 3}} \right)$$ + f2$$\left( {{3 \over 2}} \right)$$ is equal to :
Statement - 1 : The set $$\left\{ {x:f\left( x \right) = {f^{ - 1}}\left( x \right)} \right\} = \left\{ {0, - 1} \right\}$$.
Statement - 2 : $$f$$ is a bijection.
Y = { y $$ \in $$ N, y = 4x + 3 for some x $$ \in $$ N }.
Show that f is invertible and its inverse is
$$f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {{x \over 2} - 1} \right)$$$$ + \log \left( {\cos x} \right)$$,
is defined, is
$$f\left( x \right) = {\tan ^{ - 1}}{{2x} \over {1 - {x^2}}}$$,
then $$f$$ is both one-one and onto when B is the interval
f(x - y) = f(x)f(y) - f(a - x)f(a + y)
where a is given constant and f(0) = 1, f(2a - x) is equal to
$$f\left( x \right) = {{{{\sin }^{ - 1}}\left( {x - 3} \right)} \over {\sqrt {9 - {x^2}} }}$$
$$f\left( x \right) = \sin x - \sqrt 3 \cos x + 1$$,
is onto, then the interval of $$S$$ is
Numerical
Let $$A=\{(x, y): 2 x+3 y=23, x, y \in \mathbb{N}\}$$ and $$B=\{x:(x, y) \in A\}$$. Then the number of one-one functions from $$A$$ to $$B$$ is equal to _________.
If a function $$f$$ satisfies $$f(\mathrm{~m}+\mathrm{n})=f(\mathrm{~m})+f(\mathrm{n})$$ for all $$\mathrm{m}, \mathrm{n} \in \mathbf{N}$$ and $$f(1)=1$$, then the largest natural number $$\lambda$$ such that $$\sum_\limits{\mathrm{k}=1}^{2022} f(\lambda+\mathrm{k}) \leq(2022)^2$$ is equal to _________.
If the range of $$f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$$ is $$[\alpha, \beta]$$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $$\frac{\alpha}{\beta}$$, is equal to __________.
If $$S=\{a \in \mathbf{R}:|2 a-1|=3[a]+2\{a \}\}$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$ and $$\{t\}$$ represents the fractional part of $$t$$, then $$72 \sum_\limits{a \in S} a$$ is equal to _________.
Consider the function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ defined by $$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$$. If the composition of $$f, \underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$$, then the value of $$\sqrt{3 \alpha+1}$$ is equal to _______.
Let $$\mathrm{A}=\{1,2,3, \ldots, 7\}$$ and let $$\mathrm{P}(\mathrm{A})$$ denote the power set of $$\mathrm{A}$$. If the number of functions $$f: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$$ such that $$\mathrm{a} \in f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A}$$ is $$\mathrm{m}^{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n} \in \mathrm{N}$$ and $$\mathrm{m}$$ is least, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.
Let $$\mathrm{A}=\{1,2,3,4,5\}$$ and $$\mathrm{B}=\{1,2,3,4,5,6\}$$. Then the number of functions $$f: \mathrm{A} \rightarrow \mathrm{B}$$ satisfying $$f(1)+f(2)=f(4)-1$$ is equal to __________.
Let $$\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$$ and $$\mathrm{S}=\{1,2,3,4\}$$. Total number of onto functions $$f: \mathrm{R} \rightarrow \mathrm{S}$$ such that $$f(\mathrm{a}) \neq 1$$, is equal to ______________.
If domain of the function $$\log _{e}\left(\frac{6 x^{2}+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^{2}-3 x+4}{3 x-5}\right)$$ is $$(\alpha, \beta) \cup(\gamma, \delta]$$, then $$18\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)$$ is equal to ______________.
Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.
Suppose $$f$$ is a function satisfying $$f(x + y) = f(x) + f(y)$$ for all $$x,y \in N$$ and $$f(1) = {1 \over 5}$$. If $$\sum\limits_{n = 1}^m {{{f(n)} \over {n(n + 1)(n + 2)}} = {1 \over {12}}} $$, then $$m$$ is equal to __________.
For some a, b, c $$\in\mathbb{N}$$, let $$f(x) = ax - 3$$ and $$\mathrm{g(x)=x^b+c,x\in\mathbb{R}}$$. If $${(fog)^{ - 1}}(x) = {\left( {{{x - 7} \over 2}} \right)^{1/3}}$$, then $$(fog)(ac) + (gof)(b)$$ is equal to ____________.
For $$\mathrm{p}, \mathrm{q} \in \mathbf{R}$$, consider the real valued function $$f(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R}$$ and $$\mathrm{q}>0$$. Let $$\mathrm{a}_{1}$$, $$\mathrm{a}_{2^{\prime}}$$ $$\mathrm{a}_{3}$$ and $$\mathrm{a}_{4}$$ be in an arithmetic progression with mean $$\mathrm{p}$$ and positive common difference. If $$\left|f\left(\mathrm{a}_{i}\right)\right|=500$$ for all $$i=1,2,3,4$$, then the absolute difference between the roots of $$f(x)=0$$ is ___________.
The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.
Let $$f(x)=2 x^{2}-x-1$$ and $$\mathrm{S}=\{n \in \mathbb{Z}:|f(n)| \leq 800\}$$. Then, the value of $$\sum\limits_{n \in S} f(n)$$ is equal to ___________.
Let $$f(x)$$ be a quadratic polynomial with leading coefficient 1 such that $$f(0)=p, p \neq 0$$, and $$f(1)=\frac{1}{3}$$. If the equations $$f(x)=0$$ and $$f \circ f \circ f \circ f(x)=0$$ have a common real root, then $$f(-3)$$ is equal to ________________.
Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $$f(g(x)) = 8{x^2} - 2x$$ and $$g(f(x)) = 4{x^2} + 6x + 1$$, then the value of $$f(2) + g(2)$$ is _________.
Let c, k $$\in$$ R. If $$f(x) = (c + 1){x^2} + (1 - {c^2})x + 2k$$ and $$f(x + y) = f(x) + f(y) - xy$$, for all x, y $$\in$$ R, then the value of $$|2(f(1) + f(2) + f(3) + \,\,......\,\, + \,\,f(20))|$$ is equal to ____________.
Let S = {1, 2, 3, 4}. Then the number of elements in the set { f : S $$\times$$ S $$\to$$ S : f is onto and f (a, b) = f (b, a) $$\ge$$ a $$\forall$$ (a, b) $$\in$$ S $$\times$$ S } is ______________.
Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f : S $$\to$$ S as
$$f(n) = \left\{ {\matrix{ {2n} & , & {if\,n = 1,2,3,4,5} \cr {2n - 11} & , & {if\,n = 6,7,8,9,10} \cr } } \right.$$.
Let g : S $$\to$$ S be a function such that $$fog(n) = \left\{ {\matrix{ {n + 1} & , & {if\,n\,\,is\,odd} \cr {n - 1} & , & {if\,n\,\,is\,even} \cr } } \right.$$.
Then $$g(10)g(1) + g(2) + g(3) + g(4) + g(5))$$ is equal to _____________.
Let f : R $$\to$$ R be a function defined by $$f(x) = {{2{e^{2x}}} \over {{e^{2x}} + e}}$$. Then $$f\left( {{1 \over {100}}} \right) + f\left( {{2 \over {100}}} \right) + f\left( {{3 \over {100}}} \right) + \,\,\,.....\,\,\, + \,\,\,f\left( {{{99} \over {100}}} \right)$$ is equal to ______________.
Let $$f:R \to R$$ be a function defined by
$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.
The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such
that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.
such that f(m . n) = f(m) . f(n) for every m, n $$\in$$ S and m . n $$\in$$ S is equal to _____________.
f(x + y) = f(x)f(y) for all x, y $$ \in $$ R and f(1) = 3.
If $$\sum\limits_{i = 1}^n {f(i)} = 363$$ then n is equal to ________ .
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.