Numerical

1

Let the domain of the function $f(x)=\cos ^{-1}\left(\frac{4 x+5}{3 x-7}\right)$ be $[\alpha, \beta]$ and the domain of $g(x)=\log _2\left(2-6 \log _{27}(2 x+5)\right)$ be $(\gamma, \delta)$.

Then $|7(\alpha+\beta)+4(\gamma+\delta)|$ is equal to ______________.

JEE Main 2025 (Online) 8th April Evening Shift
2

Let $$A=\{(x, y): 2 x+3 y=23, x, y \in \mathbb{N}\}$$ and $$B=\{x:(x, y) \in A\}$$. Then the number of one-one functions from $$A$$ to $$B$$ is equal to _________.

JEE Main 2024 (Online) 9th April Evening Shift
3

If a function $$f$$ satisfies $$f(\mathrm{~m}+\mathrm{n})=f(\mathrm{~m})+f(\mathrm{n})$$ for all $$\mathrm{m}, \mathrm{n} \in \mathbf{N}$$ and $$f(1)=1$$, then the largest natural number $$\lambda$$ such that $$\sum_\limits{\mathrm{k}=1}^{2022} f(\lambda+\mathrm{k}) \leq(2022)^2$$ is equal to _________.

JEE Main 2024 (Online) 9th April Morning Shift
4

If the range of $$f(\theta)=\frac{\sin ^4 \theta+3 \cos ^2 \theta}{\sin ^4 \theta+\cos ^2 \theta}, \theta \in \mathbb{R}$$ is $$[\alpha, \beta]$$, then the sum of the infinite G.P., whose first term is 64 and the common ratio is $$\frac{\alpha}{\beta}$$, is equal to __________.

JEE Main 2024 (Online) 8th April Morning Shift
5

If $$S=\{a \in \mathbf{R}:|2 a-1|=3[a]+2\{a \}\}$$, where $$[t]$$ denotes the greatest integer less than or equal to $$t$$ and $$\{t\}$$ represents the fractional part of $$t$$, then $$72 \sum_\limits{a \in S} a$$ is equal to _________.

JEE Main 2024 (Online) 5th April Morning Shift
6

Consider the function $$f: \mathbb{R} \rightarrow \mathbb{R}$$ defined by $$f(x)=\frac{2 x}{\sqrt{1+9 x^2}}$$. If the composition of $$f, \underbrace{(f \circ f \circ f \circ \cdots \circ f)}_{10 \text { times }}(x)=\frac{2^{10} x}{\sqrt{1+9 \alpha x^2}}$$, then the value of $$\sqrt{3 \alpha+1}$$ is equal to _______.

JEE Main 2024 (Online) 4th April Evening Shift
7

Let $$\mathrm{A}=\{1,2,3, \ldots, 7\}$$ and let $$\mathrm{P}(\mathrm{A})$$ denote the power set of $$\mathrm{A}$$. If the number of functions $$f: \mathrm{A} \rightarrow \mathrm{P}(\mathrm{A})$$ such that $$\mathrm{a} \in f(\mathrm{a}), \forall \mathrm{a} \in \mathrm{A}$$ is $$\mathrm{m}^{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n} \in \mathrm{N}$$ and $$\mathrm{m}$$ is least, then $$\mathrm{m}+\mathrm{n}$$ is equal to _________.

JEE Main 2024 (Online) 30th January Morning Shift
8

Let $$\mathrm{A}=\{1,2,3,4,5\}$$ and $$\mathrm{B}=\{1,2,3,4,5,6\}$$. Then the number of functions $$f: \mathrm{A} \rightarrow \mathrm{B}$$ satisfying $$f(1)+f(2)=f(4)-1$$ is equal to __________.

JEE Main 2023 (Online) 11th April Evening Shift
9

Let $$\mathrm{R}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}\}$$ and $$\mathrm{S}=\{1,2,3,4\}$$. Total number of onto functions $$f: \mathrm{R} \rightarrow \mathrm{S}$$ such that $$f(\mathrm{a}) \neq 1$$, is equal to ______________.

JEE Main 2023 (Online) 8th April Evening Shift
10

If domain of the function $$\log _{e}\left(\frac{6 x^{2}+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^{2}-3 x+4}{3 x-5}\right)$$ is $$(\alpha, \beta) \cup(\gamma, \delta]$$, then $$18\left(\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}\right)$$ is equal to ______________.

JEE Main 2023 (Online) 8th April Evening Shift
11
Let $A=\{1,2,3,5,8,9\}$. Then the number of possible functions $f: A \rightarrow A$ such that $f(m \cdot n)=f(m) \cdot f(n)$ for every $m, n \in A$ with $m \cdot n \in A$ is equal to ___________.
JEE Main 2023 (Online) 30th January Evening Shift
12

Let $$S=\{1,2,3,4,5,6\}$$. Then the number of one-one functions $$f: \mathrm{S} \rightarrow \mathrm{P}(\mathrm{S})$$, where $$\mathrm{P}(\mathrm{S})$$ denote the power set of $$\mathrm{S}$$, such that $$f(n) \subset f(\mathrm{~m})$$ where $$n < m$$ is ____________.

JEE Main 2023 (Online) 30th January Morning Shift
13

Suppose $$f$$ is a function satisfying $$f(x + y) = f(x) + f(y)$$ for all $$x,y \in N$$ and $$f(1) = {1 \over 5}$$. If $$\sum\limits_{n = 1}^m {{{f(n)} \over {n(n + 1)(n + 2)}} = {1 \over {12}}} $$, then $$m$$ is equal to __________.

JEE Main 2023 (Online) 29th January Morning Shift
14

For some a, b, c $$\in\mathbb{N}$$, let $$f(x) = ax - 3$$ and $$\mathrm{g(x)=x^b+c,x\in\mathbb{R}}$$. If $${(fog)^{ - 1}}(x) = {\left( {{{x - 7} \over 2}} \right)^{1/3}}$$, then $$(fog)(ac) + (gof)(b)$$ is equal to ____________.

JEE Main 2023 (Online) 25th January Morning Shift
15

For $$\mathrm{p}, \mathrm{q} \in \mathbf{R}$$, consider the real valued function $$f(x)=(x-\mathrm{p})^{2}-\mathrm{q}, x \in \mathbf{R}$$ and $$\mathrm{q}>0$$. Let $$\mathrm{a}_{1}$$, $$\mathrm{a}_{2^{\prime}}$$ $$\mathrm{a}_{3}$$ and $$\mathrm{a}_{4}$$ be in an arithmetic progression with mean $$\mathrm{p}$$ and positive common difference. If $$\left|f\left(\mathrm{a}_{i}\right)\right|=500$$ for all $$i=1,2,3,4$$, then the absolute difference between the roots of $$f(x)=0$$ is ___________.

JEE Main 2022 (Online) 28th July Morning Shift
16

The number of functions $$f$$, from the set $$\mathrm{A}=\left\{x \in \mathbf{N}: x^{2}-10 x+9 \leq 0\right\}$$ to the set $$\mathrm{B}=\left\{\mathrm{n}^{2}: \mathrm{n} \in \mathbf{N}\right\}$$ such that $$f(x) \leq(x-3)^{2}+1$$, for every $$x \in \mathrm{A}$$, is ___________.

JEE Main 2022 (Online) 27th July Evening Shift
17

Let $$f(x)=2 x^{2}-x-1$$ and $$\mathrm{S}=\{n \in \mathbb{Z}:|f(n)| \leq 800\}$$. Then, the value of $$\sum\limits_{n \in S} f(n)$$ is equal to ___________.

JEE Main 2022 (Online) 27th July Morning Shift
18

Let $$f(x)$$ be a quadratic polynomial with leading coefficient 1 such that $$f(0)=p, p \neq 0$$, and $$f(1)=\frac{1}{3}$$. If the equations $$f(x)=0$$ and $$f \circ f \circ f \circ f(x)=0$$ have a common real root, then $$f(-3)$$ is equal to ________________.

JEE Main 2022 (Online) 25th July Evening Shift
19

Let f(x) and g(x) be two real polynomials of degree 2 and 1 respectively. If $$f(g(x)) = 8{x^2} - 2x$$ and $$g(f(x)) = 4{x^2} + 6x + 1$$, then the value of $$f(2) + g(2)$$ is _________.

JEE Main 2022 (Online) 29th June Evening Shift
20

Let c, k $$\in$$ R. If $$f(x) = (c + 1){x^2} + (1 - {c^2})x + 2k$$ and $$f(x + y) = f(x) + f(y) - xy$$, for all x, y $$\in$$ R, then the value of $$|2(f(1) + f(2) + f(3) + \,\,......\,\, + \,\,f(20))|$$ is equal to ____________.

JEE Main 2022 (Online) 29th June Morning Shift
21

Let S = {1, 2, 3, 4}. Then the number of elements in the set { f : S $$\times$$ S $$\to$$ S : f is onto and f (a, b) = f (b, a) $$\ge$$ a $$\forall$$ (a, b) $$\in$$ S $$\times$$ S } is ______________.

JEE Main 2022 (Online) 28th June Evening Shift
22

Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Define f : S $$\to$$ S as

$$f(n) = \left\{ {\matrix{ {2n} & , & {if\,n = 1,2,3,4,5} \cr {2n - 11} & , & {if\,n = 6,7,8,9,10} \cr } } \right.$$.

Let g : S $$\to$$ S be a function such that $$fog(n) = \left\{ {\matrix{ {n + 1} & , & {if\,n\,\,is\,odd} \cr {n - 1} & , & {if\,n\,\,is\,even} \cr } } \right.$$.

Then $$g(10)g(1) + g(2) + g(3) + g(4) + g(5))$$ is equal to _____________.

JEE Main 2022 (Online) 27th June Evening Shift
23

Let f : R $$\to$$ R be a function defined by $$f(x) = {{2{e^{2x}}} \over {{e^{2x}} + e}}$$. Then $$f\left( {{1 \over {100}}} \right) + f\left( {{2 \over {100}}} \right) + f\left( {{3 \over {100}}} \right) + \,\,\,.....\,\,\, + \,\,\,f\left( {{{99} \over {100}}} \right)$$ is equal to ______________.

JEE Main 2022 (Online) 27th June Morning Shift
24

Let $$f:R \to R$$ be a function defined by

$$f(x) = {\left( {2\left( {1 - {{{x^{25}}} \over 2}} \right)(2 + {x^{25}})} \right)^{{1 \over {50}}}}$$. If the function $$g(x) = f(f(f(x))) + f(f(x))$$, then the greatest integer less than or equal to g(1) is ____________.

JEE Main 2022 (Online) 25th June Morning Shift
25

The number of one-one functions f : {a, b, c, d} $$\to$$ {0, 1, 2, ......, 10} such

that 2f(a) $$-$$ f(b) + 3f(c) + f(d) = 0 is ___________.

JEE Main 2022 (Online) 24th June Morning Shift
26
Let S = {1, 2, 3, 4, 5, 6, 7}. Then the number of possible functions f : S $$\to$$ S
such that f(m . n) = f(m) . f(n) for every m, n $$\in$$ S and m . n $$\in$$ S is equal to _____________.
JEE Main 2021 (Online) 27th July Morning Shift
27
Let A = {0, 1, 2, 3, 4, 5, 6, 7}. Then the number of bijective functions f : A $$\to$$ A such that f(1) + f(2) = 3 $$-$$ f(3) is equal to
JEE Main 2021 (Online) 22th July Evening Shift
28
If f(x) and g(x) are two polynomials such that the polynomial P(x) = f(x3) + x g(x3) is divisible by x2 + x + 1, then P(1) is equal to ___________.
JEE Main 2021 (Online) 18th March Evening Shift
29
If a + $$\alpha$$ = 1, b + $$\beta$$ = 2 and $$af(x) + \alpha f\left( {{1 \over x}} \right) = bx + {\beta \over x},x \ne 0$$, then the value of the expression $${{f(x) + f\left( {{1 \over x}} \right)} \over {x + {1 \over x}}}$$ is __________.
JEE Main 2021 (Online) 24th February Evening Shift
30
Suppose that a function f : R $$ \to $$ R satisfies
f(x + y) = f(x)f(y) for all x, y $$ \in $$ R and f(1) = 3.
If $$\sum\limits_{i = 1}^n {f(i)} = 363$$ then n is equal to ________ .
JEE Main 2020 (Online) 6th September Evening Slot
31
Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set
C = {f : A $$ \to $$ B | 2 $$ \in $$ f(A) and f is not one-one} is ______.
JEE Main 2020 (Online) 5th September Evening Slot

MCQ (Single Correct Answer)

1

If the range of the function $ f(x) = \frac{5-x}{x^2 - 3x + 2} , \ x \neq 1, 2, $ is $ (-\infty , \alpha] \cup [\beta, \infty) $, then $ \alpha^2 + \beta^2 $ is equal to :

JEE Main 2025 (Online) 7th April Evening Shift
2

Let the domains of the functions $f(x)=\log _4 \log _3 \log _7\left(8-\log _2\left(x^2+4 x+5\right)\right)$ and $\mathrm{g}(x)=\sin ^{-1}\left(\frac{7 x+10}{x-2}\right)$ be $(\alpha, \beta)$ and $[\gamma, \delta]$, respectively. Then $\alpha^2+\beta^2+\gamma^2+\delta^2$ is equal to :

JEE Main 2025 (Online) 4th April Evening Shift
3

Let $f, g:(1, \infty) \rightarrow \mathbb{R}$ be defined as $f(x)=\frac{2 x+3}{5 x+2}$ and $g(x)=\frac{2-3 x}{1-x}$. If the range of the function fog: $[2,4] \rightarrow \mathbb{R}$ is $[\alpha, \beta]$, then $\frac{1}{\beta-\alpha}$ is equal to

JEE Main 2025 (Online) 4th April Morning Shift
4
Let $f$ be a function such that $f(x)+3 f\left(\frac{24}{x}\right)=4 x, x \neq 0$. Then $f(3)+f(8)$ is equal to
JEE Main 2025 (Online) 3rd April Evening Shift
5

If the domain of the function $f(x)=\log _7\left(1-\log _4\left(x^2-9 x+18\right)\right)$ is $(\alpha, \beta) \cup(\gamma, o)$, then $\alpha+\beta+\gamma+\hat{o}$ is equal to

JEE Main 2025 (Online) 3rd April Evening Shift
6
$$ \text { If the domain of the function } f(x)=\log _e\left(\frac{2 x-3}{5+4 x}\right)+\sin ^{-1}\left(\frac{4+3 x}{2-x}\right) \text { is }[\alpha, \beta) \text {, then } \alpha^2+4 \beta \text { is equal to } $$
JEE Main 2025 (Online) 3rd April Morning Shift
7
If the domain of the function $f(x)=\frac{1}{\sqrt{10+3 x-x^2}}+\frac{1}{\sqrt{x+|x|}}$ is $(a, b)$, then $(1+a)^2+b^2$ is equal to :
JEE Main 2025 (Online) 2nd April Evening Shift
8

If the domain of the function $ \log_5(18x - x^2 - 77) $ is $ (\alpha, \beta) $ and the domain of the function $ \log_{(x-1)} \left( \frac{2x^2 + 3x - 2}{x^2 - 3x - 4} \right) $ is $(\gamma, \delta)$, then $ \alpha^2 + \beta^2 + \gamma^2 $ is equal to:

JEE Main 2025 (Online) 29th January Evening Shift
9
Let $f:[0,3] \rightarrow$ A be defined by $f(x)=2 x^3-15 x^2+36 x+7$ and $g:[0, \infty) \rightarrow B$ be defined by $g(x)=\frac{x^{2025}}{x^{2025}+1}$, If both the functions are onto and $S=\{ x \in Z ; x \in A$ or $x \in B \}$, then $n(S)$ is equal to :
JEE Main 2025 (Online) 28th January Evening Shift
10

If $f(x)=\frac{2^x}{2^x+\sqrt{2}}, \mathrm{x} \in \mathbb{R}$, then $\sum_\limits{\mathrm{k}=1}^{81} f\left(\frac{\mathrm{k}}{82}\right)$ is equal to

JEE Main 2025 (Online) 28th January Morning Shift
11

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=(2+3 a) x^2+\left(\frac{a+2}{a-1}\right) x+b, a \neq 1$. If $f(x+y)=f(x)+f(\mathrm{y})+1-\frac{2}{7} x \mathrm{y}$, then the value of $28 \sum\limits_{i=1}^5|f(i)|$ is

JEE Main 2025 (Online) 28th January Morning Shift
12

The function $f:(-\infty, \infty) \rightarrow(-\infty, 1)$, defined by $f(x)=\frac{2^x-2^{-x}}{2^x+2^{-x}}$ is :

JEE Main 2025 (Online) 24th January Evening Shift
13

Let $f(x)=\frac{2^{x+2}+16}{2^{2 x+1}+2^{x+4}+32}$. Then the value of $8\left(f\left(\frac{1}{15}\right)+f\left(\frac{2}{15}\right)+\ldots+f\left(\frac{59}{15}\right)\right)$ is equal to

JEE Main 2025 (Online) 24th January Morning Shift
14

Let $f(x)=\log _{\mathrm{e}} x$ and $g(x)=\frac{x^4-2 x^3+3 x^2-2 x+2}{2 x^2-2 x+1}$. Then the domain of $f \circ g$ is

JEE Main 2025 (Online) 23rd January Morning Shift
15

Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,9,16\}$. Then the number of many-one functions $f: \mathrm{A} \rightarrow \mathrm{B}$ such that $1 \in f(\mathrm{~A})$ is equal to :

JEE Main 2025 (Online) 22nd January Evening Shift
16

Let the range of the function $$f(x)=\frac{1}{2+\sin 3 x+\cos 3 x}, x \in \mathbb{R}$$ be $$[a, b]$$. If $$\alpha$$ and $$\beta$$ ar respectively the A.M. and the G.M. of $$a$$ and $$b$$, then $$\frac{\alpha}{\beta}$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
17

If the domain of the function $$f(x)=\sin ^{-1}\left(\frac{x-1}{2 x+3}\right)$$ is $$\mathbf{R}-(\alpha, \beta)$$, then $$12 \alpha \beta$$ is equal to :

JEE Main 2024 (Online) 9th April Morning Shift
18

Let $$f(x)=\left\{\begin{array}{ccc}-\mathrm{a} & \text { if } & -\mathrm{a} \leq x \leq 0 \\ x+\mathrm{a} & \text { if } & 0< x \leq \mathrm{a}\end{array}\right.$$ where $$\mathrm{a}> 0$$ and $$\mathrm{g}(x)=(f(|x|)-|f(x)|) / 2$$. Then the function $$g:[-a, a] \rightarrow[-a, a]$$ is

JEE Main 2024 (Online) 8th April Evening Shift
19

If the function $$f(x)=\left(\frac{1}{x}\right)^{2 x} ; x>0$$ attains the maximum value at $$x=\frac{1}{\mathrm{e}}$$ then :

JEE Main 2024 (Online) 6th April Evening Shift
20

Let $$f(x)=\frac{1}{7-\sin 5 x}$$ be a function defined on $$\mathbf{R}$$. Then the range of the function $$f(x)$$ is equal to :

JEE Main 2024 (Online) 6th April Evening Shift
21

The function $$f(x)=\frac{x^2+2 x-15}{x^2-4 x+9}, x \in \mathbb{R}$$ is

JEE Main 2024 (Online) 6th April Morning Shift
22

Let $$f, g: \mathbf{R} \rightarrow \mathbf{R}$$ be defined as :

$$f(x)=|x-1| \text { and } g(x)= \begin{cases}\mathrm{e}^x, & x \geq 0 \\ x+1, & x \leq 0 .\end{cases}$$

Then the function $$f(g(x))$$ is

JEE Main 2024 (Online) 5th April Evening Shift
23

Let $$A=\{1,3,7,9,11\}$$ and $$B=\{2,4,5,7,8,10,12\}$$. Then the total number of one-one maps $$f: A \rightarrow B$$, such that $$f(1)+f(3)=14$$, is :

JEE Main 2024 (Online) 5th April Morning Shift
24
If the domain of the function

$f(x)=\frac{\sqrt{x^2-25}}{\left(4-x^2\right)}+\log _{10}\left(x^2+2 x-15\right)$ is $(-\infty, \alpha) \cup[\beta, \infty)$, then $\alpha^2+\beta^3$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
25
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be defined as

$f(x)=\left\{\begin{array}{ll}\log _{\mathrm{e}} x, & x>0 \\ \mathrm{e}^{-x}, & x \leq 0\end{array}\right.$ and

$g(x)=\left\{\begin{array}{ll}x, & x \geqslant 0 \\ \mathrm{e}^x, & x<0\end{array}\right.$. Then, gof : $\mathbf{R} \rightarrow \mathbf{R}$ is :
JEE Main 2024 (Online) 1st February Morning Shift
26

If $$f(x)=\frac{4 x+3}{6 x-4}, x \neq \frac{2}{3}$$ and $$(f \circ f)(x)=g(x)$$, where $$g: \mathbb{R}-\left\{\frac{2}{3}\right\} \rightarrow \mathbb{R}-\left\{\frac{2}{3}\right\}$$, then $$(g ogog)(4)$$ is equal to

JEE Main 2024 (Online) 31st January Morning Shift
27

If the domain of the function $$f(x)=\log _e\left(\frac{2 x+3}{4 x^2+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$$ is $$(\alpha, \beta]$$, then the value of $$5 \beta-4 \alpha$$ is equal to

JEE Main 2024 (Online) 30th January Evening Shift
28

If the domain of the function $$f(x)=\cos ^{-1}\left(\frac{2-|x|}{4}\right)+\left\{\log _e(3-x)\right\}^{-1}$$ is $$[-\alpha, \beta)-\{\gamma\}$$, then $$\alpha+\beta+\gamma$$ is equal to :

JEE Main 2024 (Online) 30th January Morning Shift
29

If $$f(x)=\left\{\begin{array}{cc}2+2 x, & -1 \leq x < 0 \\ 1-\frac{x}{3}, & 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{cc}-x, & -3 \leq x \leq 0 \\ x, & 0 < x \leq 1\end{array}\right.\right.$$, then range of $$(f o g)(x)$$ is

JEE Main 2024 (Online) 29th January Morning Shift
30

Let $$f: \mathbf{R}-\left\{\frac{-1}{2}\right\} \rightarrow \mathbf{R}$$ and $$g: \mathbf{R}-\left\{\frac{-5}{2}\right\} \rightarrow \mathbf{R}$$ be defined as $$f(x)=\frac{2 x+3}{2 x+1}$$ and $$g(x)=\frac{|x|+1}{2 x+5}$$. Then, the domain of the function fog is :

JEE Main 2024 (Online) 27th January Evening Shift
31
The function $f: \mathbf{N}-\{1\} \rightarrow \mathbf{N}$; defined by $f(\mathrm{n})=$ the highest prime factor of $\mathrm{n}$, is :
JEE Main 2024 (Online) 27th January Morning Shift
32

The range of $$f(x)=4 \sin ^{-1}\left(\frac{x^{2}}{x^{2}+1}\right)$$ is

JEE Main 2023 (Online) 13th April Evening Shift
33

For $$x \in \mathbb{R}$$, two real valued functions $$f(x)$$ and $$g(x)$$ are such that, $$g(x)=\sqrt{x}+1$$ and $$f \circ g(x)=x+3-\sqrt{x}$$. Then $$f(0)$$ is equal to

JEE Main 2023 (Online) 13th April Morning Shift
34

Let $$\mathrm{D}$$ be the domain of the function $$f(x)=\sin ^{-1}\left(\log _{3 x}\left(\frac{6+2 \log _{3} x}{-5 x}\right)\right)$$. If the range of the function $$\mathrm{g}: \mathrm{D} \rightarrow \mathbb{R}$$ defined by $$\mathrm{g}(x)=x-[x],([x]$$ is the greatest integer function), is $$(\alpha, \beta)$$, then $$\alpha^{2}+\frac{5}{\beta}$$ is equal to

JEE Main 2023 (Online) 12th April Morning Shift
35

The domain of the function $$f(x)=\frac{1}{\sqrt{[x]^{2}-3[x]-10}}$$ is : ( where $$[\mathrm{x}]$$ denotes the greatest integer less than or equal to $$x$$ )

JEE Main 2023 (Online) 11th April Evening Shift
36

If $$f(x) = {{(\tan 1^\circ )x + {{\log }_e}(123)} \over {x{{\log }_e}(1234) - (\tan 1^\circ )}},x > 0$$, then the least value of $$f(f(x)) + f\left( {f\left( {{4 \over x}} \right)} \right)$$ is :

JEE Main 2023 (Online) 10th April Morning Shift
37

Let the sets A and B denote the domain and range respectively of the function $$f(x)=\frac{1}{\sqrt{\lceil x\rceil-x}}$$, where $$\lceil x\rceil$$ denotes the smallest integer greater than or equal to $$x$$. Then among the statements

(S1) : $$A \cap B=(1, \infty)-\mathbb{N}$$ and

(S2) : $$A \cup B=(1, \infty)$$

JEE Main 2023 (Online) 6th April Evening Shift
38

Let $$f:\mathbb{R}-{0,1}\to \mathbb{R}$$ be a function such that $$f(x)+f\left(\frac{1}{1-x}\right)=1+x$$. Then $$f(2)$$ is equal to

JEE Main 2023 (Online) 1st February Evening Shift
39

Let $$f(x) = \left| {\matrix{ {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\sin 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \sin 2x} \cr } } \right|,\,x \in \left[ {{\pi \over 6},{\pi \over 3}} \right]$$. If $$\alpha$$ and $$\beta$$ respectively are the maximum and the minimum values of $$f$$, then

JEE Main 2023 (Online) 1st February Morning Shift
40
Let $f: \mathbb{R}-\{2,6\} \rightarrow \mathbb{R}$ be real valued function

defined as $f(x)=\frac{x^2+2 x+1}{x^2-8 x+12}$.

Then range of $f$ is
JEE Main 2023 (Online) 31st January Evening Shift
41
The absolute minimum value, of the function

$f(x)=\left|x^{2}-x+1\right|+\left[x^{2}-x+1\right]$,

where $[t]$ denotes the greatest integer function, in the interval $[-1,2]$, is :
JEE Main 2023 (Online) 31st January Evening Shift
42
If the domain of the function $$f(x)=\frac{[x]}{1+x^{2}}$$, where $$[x]$$ is greatest integer $$\leq x$$, is $$[2,6)$$, then its range is
JEE Main 2023 (Online) 31st January Morning Shift
43
The range of the function $f(x)=\sqrt{3-x}+\sqrt{2+x}$ is :
JEE Main 2023 (Online) 30th January Evening Shift
44

Consider a function $$f:\mathbb{N}\to\mathbb{R}$$, satisfying $$f(1)+2f(2)+3f(3)+....+xf(x)=x(x+1)f(x);x\ge2$$ with $$f(1)=1$$. Then $$\frac{1}{f(2022)}+\frac{1}{f(2028)}$$ is equal to

JEE Main 2023 (Online) 29th January Evening Shift
45

The domain of $$f(x) = {{{{\log }_{(x + 1)}}(x - 2)} \over {{e^{2{{\log }_e}x}} - (2x + 3)}},x \in \mathbb{R}$$ is

JEE Main 2023 (Online) 29th January Morning Shift
46

Let $$f:R \to R$$ be a function such that $$f(x) = {{{x^2} + 2x + 1} \over {{x^2} + 1}}$$. Then

JEE Main 2023 (Online) 29th January Morning Shift
47

The number of functions

$$f:\{ 1,2,3,4\} \to \{ a \in Z|a| \le 8\} $$

satisfying $$f(n) + {1 \over n}f(n + 1) = 1,\forall n \in \{ 1,2,3\} $$ is

JEE Main 2023 (Online) 25th January Evening Shift
48

Let $$f:\mathbb{R}\to\mathbb{R}$$ be a function defined by $$f(x) = {\log _{\sqrt m }}\{ \sqrt 2 (\sin x - \cos x) + m - 2\} $$, for some $$m$$, such that the range of $$f$$ is [0, 2]. Then the value of $$m$$ is _________

JEE Main 2023 (Online) 25th January Evening Shift
49

Let $$f(x) = 2{x^n} + \lambda ,\lambda \in R,n \in N$$, and $$f(4) = 133,f(5) = 255$$. Then the sum of all the positive integer divisors of $$(f(3) - f(2))$$ is

JEE Main 2023 (Online) 25th January Evening Shift
50

Let $$f(x)$$ be a function such that $$f(x+y)=f(x).f(y)$$ for all $$x,y\in \mathbb{N}$$. If $$f(1)=3$$ and $$\sum\limits_{k = 1}^n {f(k) = 3279} $$, then the value of n is

JEE Main 2023 (Online) 24th January Evening Shift
51

If $$f(x) = {{{2^{2x}}} \over {{2^{2x}} + 2}},x \in \mathbb{R}$$, then $$f\left( {{1 \over {2023}}} \right) + f\left( {{2 \over {2023}}} \right)\, + \,...\, + \,f\left( {{{2022} \over {2023}}} \right)$$ is equal to

JEE Main 2023 (Online) 24th January Evening Shift
52

$$ \text { Let } f(x)=a x^{2}+b x+c \text { be such that } f(1)=3, f(-2)=\lambda \text { and } $$ $$f(3)=4$$. If $$f(0)+f(1)+f(-2)+f(3)=14$$, then $$\lambda$$ is equal to :

JEE Main 2022 (Online) 28th July Evening Shift
53

Let $$\alpha, \beta$$ and $$\gamma$$ be three positive real numbers. Let $$f(x)=\alpha x^{5}+\beta x^{3}+\gamma x, x \in \mathbf{R}$$ and $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be such that $$g(f(x))=x$$ for all $$x \in \mathbf{R}$$. If $$\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots, \mathrm{a}_{\mathrm{n}}$$ be in arithmetic progression with mean zero, then the value of $$f\left(g\left(\frac{1}{\mathrm{n}} \sum\limits_{i=1}^{\mathrm{n}} f\left(\mathrm{a}_{i}\right)\right)\right)$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
54

Let $$f, g: \mathbb{N}-\{1\} \rightarrow \mathbb{N}$$ be functions defined by $$f(a)=\alpha$$, where $$\alpha$$ is the maximum of the powers of those primes $$p$$ such that $$p^{\alpha}$$ divides $$a$$, and $$g(a)=a+1$$, for all $$a \in \mathbb{N}-\{1\}$$. Then, the function $$f+g$$ is

JEE Main 2022 (Online) 27th July Morning Shift
55

The number of bijective functions $$f:\{1,3,5,7, \ldots, 99\} \rightarrow\{2,4,6,8, \ldots .100\}$$, such that $$f(3) \geq f(9) \geq f(15) \geq f(21) \geq \ldots . . f(99)$$, is ____________.

JEE Main 2022 (Online) 25th July Evening Shift
56

The total number of functions,

$$ f:\{1,2,3,4\} \rightarrow\{1,2,3,4,5,6\} $$ such that $$f(1)+f(2)=f(3)$$, is equal to :

JEE Main 2022 (Online) 25th July Morning Shift
57

Let a function f : N $$\to$$ N be defined by

$$f(n) = \left[ {\matrix{ {2n,} & {n = 2,4,6,8,......} \cr {n - 1,} & {n = 3,7,11,15,......} \cr {{{n + 1} \over 2},} & {n = 1,5,9,13,......} \cr } } \right.$$

then, f is

JEE Main 2022 (Online) 28th June Morning Shift
58

Let f : R $$\to$$ R be defined as f (x) = x $$-$$ 1 and g : R $$-$$ {1, $$-$$1} $$\to$$ R be defined as $$g(x) = {{{x^2}} \over {{x^2} - 1}}$$.

Then the function fog is :

JEE Main 2022 (Online) 26th June Evening Shift
59

Let $$f(x) = {{x - 1} \over {x + 1}},\,x \in R - \{ 0, - 1,1\} $$. If $${f^{n + 1}}(x) = f({f^n}(x))$$ for all n $$\in$$ N, then $${f^6}(6) + {f^7}(7)$$ is equal to :

JEE Main 2022 (Online) 26th June Morning Shift
60

Let f : N $$\to$$ R be a function such that $$f(x + y) = 2f(x)f(y)$$ for natural numbers x and y. If f(1) = 2, then the value of $$\alpha$$ for which

$$\sum\limits_{k = 1}^{10} {f(\alpha + k) = {{512} \over 3}({2^{20}} - 1)} $$

holds, is :

JEE Main 2022 (Online) 25th June Morning Shift
61

Let $$f:R \to R$$ and $$g:R \to R$$ be two functions defined by $$f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$$ and $$g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$$. Then, for which of the following range of $$\alpha$$, the inequality $$f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$$ holds ?

JEE Main 2022 (Online) 25th June Morning Shift
62
The range of the function,

$$f(x) = {\log _{\sqrt 5 }}\left( {3 + \cos \left( {{{3\pi } \over 4} + x} \right) + \cos \left( {{\pi \over 4} + x} \right) + \cos \left( {{\pi \over 4} - x} \right) - \cos \left( {{{3\pi } \over 4} - x} \right)} \right)$$ is :
JEE Main 2021 (Online) 1st September Evening Shift
63
Let f : N $$\to$$ N be a function such that f(m + n) = f(m) + f(n) for every m, n$$\in$$N. If f(6) = 18, then f(2) . f(3) is equal to :
JEE Main 2021 (Online) 31st August Evening Shift
64
Let f : R $$\to$$ R be defined as $$f(x + y) + f(x - y) = 2f(x)f(y),f\left( {{1 \over 2}} \right) = - 1$$. Then, the value of $$\sum\limits_{k = 1}^{20} {{1 \over {\sin (k)\sin (k + f(k))}}} $$ is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
65
Consider function f : A $$\to$$ B and g : B $$\to$$ C (A, B, C $$ \subseteq $$ R) such that (gof)$$-$$1 exists, then :
JEE Main 2021 (Online) 25th July Evening Shift
66
Let g : N $$\to$$ N be defined as

g(3n + 1) = 3n + 2,

g(3n + 2) = 3n + 3,

g(3n + 3) = 3n + 1, for all n $$\ge$$ 0.

Then which of the following statements is true?
JEE Main 2021 (Online) 25th July Morning Shift
67
Let $$f:R - \left\{ {{\alpha \over 6}} \right\} \to R$$ be defined by $$f(x) = {{5x + 3} \over {6x - \alpha }}$$. Then the value of $$\alpha$$ for which (fof)(x) = x, for all $$x \in R - \left\{ {{\alpha \over 6}} \right\}$$, is :
JEE Main 2021 (Online) 20th July Evening Shift
68
Let [ x ] denote the greatest integer $$\le$$ x, where x $$\in$$ R. If the domain of the real valued function $$f(x) = \sqrt {{{\left| {[x]} \right| - 2} \over {\left| {[x]} \right| - 3}}} $$ is ($$-$$ $$\infty$$, a) $$]\cup$$ [b, c) $$\cup$$ [4, $$\infty$$), a < b < c, then the value of a + b + c is :
JEE Main 2021 (Online) 20th July Morning Shift
69
Let f : R $$-$$ {3} $$ \to $$ R $$-$$ {1} be defined by f(x) = $${{x - 2} \over {x - 3}}$$.

Let g : R $$ \to $$ R be given as g(x) = 2x $$-$$ 3. Then, the sum of all the values of x for which f$$-$$1(x) + g$$-$$1(x) = $${{13} \over 2}$$ is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
70
The real valued function
$$f(x) = {{\cos e{c^{ - 1}}x} \over {\sqrt {x - [x]} }}$$, where [x] denotes the greatest integer less than or equal to x, is defined for all x belonging to :
JEE Main 2021 (Online) 18th March Morning Shift
71
If the functions are defined as $$f(x) = \sqrt x $$ and $$g(x) = \sqrt {1 - x} $$, then what is the common domain of the following functions :

f + g, f $$-$$ g, f/g, g/f, g $$-$$ f where $$(f \pm g)(x) = f(x) \pm g(x),(f/g)x = {{f(x)} \over {g(x)}}$$
JEE Main 2021 (Online) 18th March Morning Shift
72
The inverse of $$y = {5^{\log x}}$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
73
The range of a$$\in$$R for which the

function f(x) = (4a $$-$$ 3)(x + loge 5) + 2(a $$-$$ 7) cot$$\left( {{x \over 2}} \right)$$ sin2$$\left( {{x \over 2}} \right)$$, x $$\ne$$ 2n$$\pi$$, n$$\in$$N has critical points, is :
JEE Main 2021 (Online) 16th March Morning Shift
74
Let $$A = \{ 1,2,3,....,10\} $$ and $$f:A \to A$$ be defined as

$$f(k) = \left\{ {\matrix{ {k + 1} & {if\,k\,is\,odd} \cr k & {if\,k\,is\,even} \cr } } \right.$$

Then the number of possible functions $$g:A \to A$$ such that $$gof = f$$ is :
JEE Main 2021 (Online) 26th February Evening Shift
75
A function f(x) is given by $$f(x) = {{{5^x}} \over {{5^x} + 5}}$$, then the sum of the series $$f\left( {{1 \over {20}}} \right) + f\left( {{2 \over {20}}} \right) + f\left( {{3 \over {20}}} \right) + ....... + f\left( {{{39} \over {20}}} \right)$$ is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
76
Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions form the set A to the set A $$\times$$ B. Then :
JEE Main 2021 (Online) 25th February Evening Shift
77
Let f, g : N $$ \to $$ N such that f(n + 1) = f(n) + f(1) $$\forall $$ n$$\in$$N and g be any arbitrary function. Which of the following statements is NOT true?
JEE Main 2021 (Online) 25th February Morning Shift
78
Let f : R → R be defined as f (x) = 2x – 1 and g : R - {1} → R be defined as g(x) = $${{x - {1 \over 2}} \over {x - 1}}$$. Then the composition function f(g(x)) is :
JEE Main 2021 (Online) 24th February Morning Shift
79
For a suitably chosen real constant a, let a

function, $$f:R - \left\{ { - a} \right\} \to R$$ be defined by

$$f(x) = {{a - x} \over {a + x}}$$. Further suppose that for any real number $$x \ne - a$$ and $$f(x) \ne - a$$,

(fof)(x) = x. Then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
JEE Main 2020 (Online) 6th September Evening Slot
80
If f(x + y) = f(x)f(y) and $$\sum\limits_{x = 1}^\infty {f\left( x \right)} = 2$$ , x, y $$ \in $$ N, where N is the set of all natural number, then the value of $${{f\left( 4 \right)} \over {f\left( 2 \right)}}$$ is :
JEE Main 2020 (Online) 6th September Morning Slot
81
Let f : R $$ \to $$ R be a function which satisfies
f(x + y) = f(x) + f(y) $$\forall $$ x, y $$ \in $$ R. If f(1) = 2 and
g(n) = $$\sum\limits_{k = 1}^{\left( {n - 1} \right)} {f\left( k \right)} $$, n $$ \in $$ N then the value of n, for which g(n) = 20, is :
JEE Main 2020 (Online) 2nd September Evening Slot
82
Let a – 2b + c = 1.

If $$f(x)=\left| {\matrix{ {x + a} & {x + 2} & {x + 1} \cr {x + b} & {x + 3} & {x + 2} \cr {x + c} & {x + 4} & {x + 3} \cr } } \right|$$, then:
JEE Main 2020 (Online) 9th January Evening Slot
83
Let ƒ : (1, 3) $$ \to $$ R be a function defined by
$$f(x) = {{x\left[ x \right]} \over {1 + {x^2}}}$$ , where [x] denotes the greatest integer $$ \le $$ x. Then the range of ƒ is
JEE Main 2020 (Online) 8th January Evening Slot
84
The inverse function of

f(x) = $${{{8^{2x}} - {8^{ - 2x}}} \over {{8^{2x}} + {8^{ - 2x}}}}$$, x $$ \in $$ (-1, 1), is :
JEE Main 2020 (Online) 8th January Morning Slot
85
If g(x) = x2 + x - 1 and
(goƒ) (x) = 4x2 - 10x + 5, then ƒ$$\left( {{5 \over 4}} \right)$$ is equal to:
JEE Main 2020 (Online) 7th January Morning Slot
86
For x $$ \in $$ (0, 3/2), let f(x) = $$\sqrt x $$ , g(x) = tan x and h(x) = $${{1 - {x^2}} \over {1 + {x^2}}}$$. If $$\phi $$ (x) = ((hof)og)(x), then $$\phi \left( {{\pi \over 3}} \right)$$ is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
87
Let f(x) = ex – x and g(x) = x2 – x, $$\forall $$ x $$ \in $$ R. Then the set of all x $$ \in $$ R, where the function h(x) = (fog) (x) is increasing, is :
JEE Main 2019 (Online) 10th April Morning Slot
88
Let f(x) = x2 , x $$ \in $$ R. For any A $$ \subseteq $$ R, define g (A) = { x $$ \in $$ R : f(x) $$ \in $$ A}. If S = [0,4], then which one of the following statements is not true ?
JEE Main 2019 (Online) 10th April Morning Slot
89
The domain of the definition of the function

$$f(x) = {1 \over {4 - {x^2}}} + {\log _{10}}({x^3} - x)$$ is
JEE Main 2019 (Online) 9th April Evening Slot
90
If the function ƒ : R – {1, –1} $$ \to $$ A defined by
ƒ(x) = $${{{x^2}} \over {1 - {x^2}}}$$ , is surjective, then A is equal to
JEE Main 2019 (Online) 9th April Morning Slot
91
Let $$\sum\limits_{k = 1}^{10} {f(a + k) = 16\left( {{2^{10}} - 1} \right)} $$ where the function ƒ satisfies
ƒ(x + y) = ƒ(x)ƒ(y) for all natural numbers x, y and ƒ(1) = 2. then the natural number 'a' is
JEE Main 2019 (Online) 9th April Morning Slot
92
Let ƒ(x) = ax (a > 0) be written as
ƒ(x) = ƒ1 (x) + ƒ2 (x), where ƒ1 (x) is an even function of ƒ2 (x) is an odd function.
Then ƒ1 (x + y) + ƒ1 (x – y) equals
JEE Main 2019 (Online) 8th April Evening Slot
93
If $$f(x) = {\log _e}\left( {{{1 - x} \over {1 + x}}} \right)$$, $$\left| x \right| < 1$$ then $$f\left( {{{2x} \over {1 + {x^2}}}} \right)$$ is equal to
JEE Main 2019 (Online) 8th April Morning Slot
94
Let a function f : (0, $$\infty $$) $$ \to $$ (0, $$\infty $$) be defined by f(x) = $$\left| {1 - {1 \over x}} \right|$$. Then f is :
JEE Main 2019 (Online) 11th January Evening Slot
95
The number of functions f from {1, 2, 3, ...., 20} onto {1, 2, 3, ...., 20} such that f(k) is a multiple of 3, whenever k is a multiple of 4, is :
JEE Main 2019 (Online) 11th January Evening Slot
96
Let fk(x) = $${1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$ for k = 1, 2, 3, ... Then for all x $$ \in $$ R, the value of f4(x) $$-$$ f6(x) is equal to
JEE Main 2019 (Online) 11th January Morning Slot
97
Let f : R $$ \to $$ R be defined by f(x) = $${x \over {1 + {x^2}}},x \in R$$.   Then the range of f is :
JEE Main 2019 (Online) 11th January Morning Slot
98
Let N be the set of natural numbers and two functions f and g be defined as f, g : N $$ \to $$ N such that

f(n) = $$\left\{ {\matrix{ {{{n + 1} \over 2};} & {if\,\,n\,\,is\,\,odd} \cr {{n \over 2};} & {if\,\,n\,\,is\,\,even} \cr } \,\,} \right.$$;

      and g(n) = n $$-$$($$-$$ 1)n.

Then fog is -
JEE Main 2019 (Online) 10th January Evening Slot
99
Let A = {x $$ \in $$ R : x is not a positive integer}.

Define a function $$f$$ : A $$ \to $$  R   as  $$f(x)$$ = $${{2x} \over {x - 1}}$$,

then $$f$$ is :
JEE Main 2019 (Online) 9th January Evening Slot
100
For $$x \in R - \left\{ {0,1} \right\}$$, Let f1(x) = $$1\over x$$, f2 (x) = 1 – x

and f3 (x) = $$1 \over {1 - x}$$ be three given

functions. If a function, J(x) satisfies

(f2 o J o f1) (x) = f3 (x) then J(x) is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
101
Let f : A $$ \to $$ B be a function defined as f(x) = $${{x - 1} \over {x - 2}},$$ Where A = R $$-$$ {2} and B = R $$-$$ {1}. Then   f   is :
JEE Main 2018 (Online) 15th April Evening Slot
102
The function f : N $$ \to $$ N defined by f (x) = x $$-$$ 5 $$\left[ {{x \over 5}} \right],$$ Where N is the set of natural numbers and [x] denotes the greatest integer less than or equal to x, is :
JEE Main 2017 (Online) 9th April Morning Slot
103
Let f(x) = 210.x + 1 and g(x)=310.x $$-$$ 1. If (fog) (x) = x, then x is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
104
The function $$f:R \to \left[ { - {1 \over 2},{1 \over 2}} \right]$$ defined as

$$f\left( x \right) = {x \over {1 + {x^2}}}$$, is
JEE Main 2017 (Offline)
105
Let $$a$$, b, c $$ \in R$$. If $$f$$(x) = ax2 + bx + c is such that
$$a$$ + b + c = 3 and $$f$$(x + y) = $$f$$(x) + $$f$$(y) + xy, $$\forall x,y \in R,$$

then $$\sum\limits_{n = 1}^{10} {f(n)} $$ is equal to
JEE Main 2017 (Offline)
106
For x $$ \in $$ R, x $$ \ne $$ 0, Let f0(x) = $${1 \over {1 - x}}$$ and
fn+1 (x) = f0(fn(x)), n = 0, 1, 2, . . . .

Then the value of f100(3) + f1$$\left( {{2 \over 3}} \right)$$ + f2$$\left( {{3 \over 2}} \right)$$ is equal to :
JEE Main 2016 (Online) 9th April Morning Slot
107
If $f(x)+2 f\left(\frac{1}{x}\right)=3 x, x \neq 0$, and $\mathrm{S}=\{x \in \mathbf{R}: f(x)=f(-x)\}$; then $\mathrm{S}:$
JEE Main 2016 (Offline)
108
The domain of the function f(x) = $${1 \over {\sqrt {\left| x \right| - x} }}$$ is
AIEEE 2011
109
Let $$f\left( x \right) = {\left( {x + 1} \right)^2} - 1,x \ge - 1$$

Statement - 1 : The set $$\left\{ {x:f\left( x \right) = {f^{ - 1}}\left( x \right)} \right\} = \left\{ {0, - 1} \right\}$$.

Statement - 2 : $$f$$ is a bijection.
AIEEE 2009
110
For real x, let f(x) = x3 + 5x + 1, then
AIEEE 2009
111
Let $$f:N \to Y$$ be a function defined as f(x) = 4x + 3 where
Y = { y $$ \in $$ N, y = 4x + 3 for some x $$ \in $$ N }.
Show that f is invertible and its inverse is
AIEEE 2008
112
The largest interval lying in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$ for which the function

$$f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {{x \over 2} - 1} \right)$$$$ + \log \left( {\cos x} \right)$$,

is defined, is
AIEEE 2007
113
Let $$f:( - 1,1) \to B$$, be a function defined by
$$f\left( x \right) = {\tan ^{ - 1}}{{2x} \over {1 - {x^2}}}$$,
then $$f$$ is both one-one and onto when B is the interval
AIEEE 2005
114
A real valued function f(x) satisfies the functional equation

f(x - y) = f(x)f(y) - f(a - x)f(a + y)

where a is given constant and f(0) = 1, f(2a - x) is equal to
AIEEE 2005
115
The domain of the function
$$f\left( x \right) = {{{{\sin }^{ - 1}}\left( {x - 3} \right)} \over {\sqrt {9 - {x^2}} }}$$
AIEEE 2004
116
The graph of the function y = f(x) is symmetrical about the line x = 2, then
AIEEE 2004
117
If $$f:R \to S$$, defined by
$$f\left( x \right) = \sin x - \sqrt 3 \cos x + 1$$,
is onto, then the interval of $$S$$ is
AIEEE 2004
118
The range of the function f(x) = $${}^{7 - x}{P_{x - 3}}$$ is
AIEEE 2004
119
The function $$f\left( x \right)$$ $$ = \log \left( {x + \sqrt {{x^2} + 1} } \right)$$, is
AIEEE 2003
120
A function $$f$$ from the set of natural numbers to integers defined by $$$f\left( n \right) = \left\{ {\matrix{ {{{n - 1} \over 2},\,when\,n\,is\,odd} \cr { - {n \over 2},\,when\,n\,is\,even} \cr } } \right.$$$ is
AIEEE 2003
121
If $$f:R \to R$$ satisfies $$f$$(x + y) = $$f$$(x) + $$f$$(y), for all x, y $$ \in $$ R and $$f$$(1) = 7, then $$\sum\limits_{r = 1}^n {f\left( r \right)} $$ is
AIEEE 2003
122
Domain of definition of the function f(x) = $${3 \over {4 - {x^2}}}$$ + $${\log _{10}}\left( {{x^3} - x} \right)$$, is
AIEEE 2003
123
Which one is not periodic?
AIEEE 2002
124
The domain of $${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {{x \over 3}} \right)} \right]$$ is
AIEEE 2002
125
The period of $${\sin ^2}\theta $$ is
AIEEE 2002
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12