1
JEE Main 2025 (Online) 7th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The integral $\int_0^\pi \frac{(x+3) \sin x}{1+3 \cos ^2 x} d x$ is equal to

A
$\frac{\pi}{\sqrt{3}}(\pi+1)$
B
$\frac{\pi}{3 \sqrt{3}}(\pi+6)$
C
$\frac{\pi}{\sqrt{3}}(\pi+2)$
D
$\frac{\pi}{2 \sqrt{3}}(\pi+4)$
2
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $f(x)+2 f\left(\frac{1}{x}\right)=x^2+5$ and $2 g(x)-3 g\left(\frac{1}{2}\right)=x, x>0$. If $\alpha=\int_1^2 f(x) \mathrm{d} x$, and $\beta=\int_1^2 g(x) \mathrm{d} x$, then the value of $9 \alpha+\beta$ is :

A
0
B
10
C
1
D
11
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $\int_\limits{-1}^1 \frac{(1+\sqrt{|x|-x}) e^x+(\sqrt{|x|-x}) e^{-x}}{e^x+e^{-x}} d x$ is equal to

A
$1+\frac{2 \sqrt{2}}{3}$
B
$1-\frac{2 \sqrt{2}}{3}$
C
$2+\frac{2 \sqrt{2}}{3}$
D
$3-\frac{2 \sqrt{2}}{3}$
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $\int_0^\pi \frac{8 x d x}{4 \cos ^2 x+\sin ^2 x}$ is equal to
A
$2 \pi^2$
B
$4 \pi^2$
C
$\pi^2$
D
$\frac{3 \pi^2}{2}$
JEE Main Subjects
EXAM MAP