Matrices and Determinants · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:
Let $ \alpha, \beta \ (\alpha \neq \beta) $ be the values of $ m $, for which the equations $ x+y+z=1 $, $ x+2y+4z=m $ and $ x+4y+10z=m^2 $ have infinitely many solutions. Then the value of $ \sum\limits_{n=1}^{10} (n^{\alpha}+n^{\beta}) $ is equal to :
Let $\mathrm{A}=\left[a_{i j}\right]$ be a matrix of order $3 \times 3$, with $a_{i j}=(\sqrt{2})^{i+j}$. If the sum of all the elements in the third row of $A^2$ is $\alpha+\beta \sqrt{2}, \alpha, \beta \in \mathbf{Z}$, then $\alpha+\beta$ is equal to :
Let $ A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} $. If $ A_{ij} $ is the cofactor of $ a_{ij} $, $ C_{ij} = \sum\limits_{k=1}^{2} a_k A_{jk} , 1 \leq i, j \leq 2 $, and $ C=[C_{ij}] $, then $ 8|C| $ is equal to :
Let M and m respectively be the maximum and the minimum values of
$f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$
Then $ M^4 - m^4 $ is equal to :
For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :
If the system of equations
$$
\begin{aligned}
& x+2 y-3 z=2 \\
& 2 x+\lambda y+5 z=5 \\
& 14 x+3 y+\mu z=33
\end{aligned}
$$
has infinitely many solutions, then $\lambda+\mu$ is equal to :
If the system of equations
$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$
has infinitely many solutions, then $\mu-2 \lambda$ is equal to
The system of equations
$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$
has no solution if
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :
If the system of equations
$$
\begin{aligned}
& (\lambda-1) x+(\lambda-4) y+\lambda z=5 \\
& \lambda x+(\lambda-1) y+(\lambda-4) z=7 \\
& (\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9
\end{aligned}$$
has infinitely many solutions, then $\lambda^2+\lambda$ is equal to
If $\mathrm{A}, \mathrm{B}, \operatorname{and}\left(\operatorname{adj}\left(\mathrm{A}^{-1}\right)+\operatorname{adj}\left(\mathrm{B}^{-1}\right)\right)$ are non-singular matrices of same order, then the inverse of $A\left(\operatorname{adj}\left(A^{-1}\right)+\operatorname{adj}\left(B^{-1}\right)\right)^{-1} B$, is equal to
If the system of linear equations :
$$\begin{aligned} & x+y+2 z=6 \\ & 2 x+3 y+\mathrm{az}=\mathrm{a}+1 \\ & -x-3 y+\mathrm{b} z=2 \mathrm{~b} \end{aligned}$$
where $a, b \in \mathbf{R}$, has infinitely many solutions, then $7 a+3 b$ is equal to :
For a $3 \times 3$ matrix $M$, let trace $(M)$ denote the sum of all the diagonal elements of $M$. Let $A$ be a $3 \times 3$ matrix such that $|A|=\frac{1}{2}$ and trace $(A)=3$. If $B=\operatorname{adj}(\operatorname{adj}(2 A))$, then the value of $|B|+$ trace $(B)$ equals :
Let $$B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$$ and $$A$$ be a $$2 \times 2$$ matrix such that $$A B^{-1}=A^{-1}$$. If $$B C B^{-1}=A$$ and $$C^4+\alpha C^2+\beta I=O$$, then $$2 \beta-\alpha$$ is equal to
Let $$\lambda, \mu \in \mathbf{R}$$. If the system of equations
$$\begin{aligned} & 3 x+5 y+\lambda z=3 \\ & 7 x+11 y-9 z=2 \\ & 97 x+155 y-189 z=\mu \end{aligned}$$
has infinitely many solutions, then $$\mu+2 \lambda$$ is equal to :
If $$\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$$ and $$\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$$, then $$\frac{\mathrm{a}}{\alpha-\mathrm{a}}+\frac{\mathrm{b}}{\beta-\mathrm{b}}+\frac{\gamma}{\gamma-\mathrm{c}}$$ is equal to :
If the system of equations $$x+4 y-z=\lambda, 7 x+9 y+\mu z=-3,5 x+y+2 z=-1$$ has infinitely many solutions, then $$(2 \mu+3 \lambda)$$ is equal to :
Let $$A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$$. If $$A^3=4 A^2-A-21 I$$, where $$I$$ is the identity matrix of order $$3 \times 3$$, then $$2 a+3 b$$ is equal to
If $$A$$ is a square matrix of order 3 such that $$\operatorname{det}(A)=3$$ and $$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$$, then $$\mathrm{m}+2 \mathrm{n}$$ is equal to :
For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is
The values of $$m, n$$, for which the system of equations
$$\begin{aligned} & x+y+z=4, \\ & 2 x+5 y+5 z=17, \\ & x+2 y+\mathrm{m} z=\mathrm{n} \end{aligned}$$
has infinitely many solutions, satisfy the equation :
Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :
Let A and B be two square matrices of order 3 such that $$\mathrm{|A|=3}$$ and $$\mathrm{|B|=2}$$. Then $$|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}|$$ is equal to :
If the system of equations
$$\begin{array}{r} 11 x+y+\lambda z=-5 \\ 2 x+3 y+5 z=3 \\ 8 x-19 y-39 z=\mu \end{array}$$
has infinitely many solutions, then $$\lambda^4-\mu$$ is equal to :
Let $$A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$$ and $$B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$$. Then, the sum of all the elements of the matrix $$B$$ is:
Let $$\alpha \in(0, \infty)$$ and $$A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$$. If $$\operatorname{det}\left(\operatorname{adj}\left(2 A-A^T\right) \cdot \operatorname{adj}\left(A-2 A^T\right)\right)=2^8$$, then $$(\operatorname{det}(A))^2$$ is equal to:
If the system of equations
$$\begin{aligned} & x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\ & x+(\cos \alpha) y+(\sin \alpha) z=0 \\ & x+(\sin \alpha) y-(\cos \alpha) z=0 \end{aligned}$$
has a non-trivial solution, then $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ is equal to :
$$ \begin{aligned} & 2 x+3 y-z=5 \\\\ & x+\alpha y+3 z=-4 \\\\ & 3 x-y+\beta z=7 \end{aligned} $$
has infinitely many solutions, then $13 \alpha \beta$ is equal to :
Let $$A$$ be a $$3 \times 3$$ real matrix such that
$$A\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=2\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right)=4\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)=2\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \text {. }$$
Then, the system $$(A-3 I)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$$ has :
If the system of linear equations
$$\begin{aligned} & x-2 y+z=-4 \\ & 2 x+\alpha y+3 z=5 \\ & 3 x-y+\beta z=3 \end{aligned}$$
has infinitely many solutions, then $$12 \alpha+13 \beta$$ is equal to
Let $$R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$$ be a non-zero $$3 \times 3$$ matrix, where $$x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$$. For a square matrix $$M$$, let trace $$(M)$$ denote the sum of all the diagonal entries of $$M$$. Then, among the statements:
(I) Trace $$(R)=0$$
(II) If trace $$(\operatorname{adj}(\operatorname{adj}(R))=0$$, then $$R$$ has exactly one non-zero entry.
Consider the system of linear equations $$x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$$, where $$\lambda, \mu \in \mathbb{R}$$. Then, which of the following statement is NOT correct?
Consider the system of linear equations $$x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$$ where $$\lambda, \mu \in \mathbf{R}$$. Which one of the following statements is NOT correct ?
Let $$A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$$ and $$P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$$. The sum of the prime factors of $$\left|P^{-1} A P-2 I\right|$$ is equal to
$$\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$$
Let $$\mathrm{A}$$ be a square matrix such that $$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$$. Then $$\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$$ is equal to
The values of $$\alpha$$, for which $$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$$, lie in the interval
Given below are two statements :
Statement I : $ f(-x)$ is the inverse of the matrix $f(x)$.
Statement II : $f(x) f(y)=f(x+y)$.
In the light of the above statements, choose the correct answer from the options given below :
satisfy $4 m+n=22$ and $17 m+4 n=93$.
If $\operatorname{det}(n \operatorname{adj}(\operatorname{adj}(m A)))=3^{a} 5^{b} 6^{c}$ then $a+b+c$ is equal to :
Let for $$A = \left[ {\matrix{ 1 & 2 & 3 \cr \alpha & 3 & 1 \cr 1 & 1 & 2 \cr } } \right],|A| = 2$$. If $$\mathrm{|2\,adj\,(2\,adj\,(2A))| = {32^n}}$$, then $$3n + \alpha $$ is equal to
If the system of equations
$$2 x+y-z=5$$
$$2 x-5 y+\lambda z=\mu$$
$$x+2 y-5 z=7$$
has infinitely many solutions, then $$(\lambda+\mu)^{2}+(\lambda-\mu)^{2}$$ is equal to
For the system of linear equations
$$2 x+4 y+2 a z=b$$
$$x+2 y+3 z=4$$
$$2 x-5 y+2 z=8$$
which of the following is NOT correct?
Let $$B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2$$ be the adjoint of a matrix $$A$$ and $$|A|=2$$. Then $$\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :
The number of symmetric matrices of order 3, with all the entries from the set $$\{0,1,2,3,4,5,6,7,8,9\}$$ is :
Let $$A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$$. If $$\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$$, then the sum of all the elements of the matrix $$\sum_\limits{n=1}^{50} B^{n}$$ is equal to
If the system of linear equations
$$ \begin{aligned} & 7 x+11 y+\alpha z=13 \\\\ & 5 x+4 y+7 z=\beta \\\\ & 175 x+194 y+57 z=361 \end{aligned} $$
has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :
$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :
Let $$\mathrm{A}$$ be a $$2 \times 2$$ matrix with real entries such that $$\mathrm{A}'=\alpha \mathrm{A}+\mathrm{I}$$, where $$\alpha \in \mathbb{R}-\{-1,1\}$$. If $$\operatorname{det}\left(A^{2}-A\right)=4$$, then the sum of all possible values of $$\alpha$$ is equal to :
If $$\mathrm{A}=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{ccc}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]$$, then $$|\operatorname{adj}(\operatorname{adj}(2 \mathrm{~A}))|$$ is equal to :
If A is a 3 $$\times$$ 3 matrix and $$|A| = 2$$, then $$|3\,adj\,(|3A|{A^2})|$$ is equal to :
For the system of linear equations
$$2x - y + 3z = 5$$
$$3x + 2y - z = 7$$
$$4x + 5y + \alpha z = \beta $$,
which of the following is NOT correct?
If $$A=\left[\begin{array}{cc}1 & 5 \\ \lambda & 10\end{array}\right], \mathrm{A}^{-1}=\alpha \mathrm{A}+\beta \mathrm{I}$$ and $$\alpha+\beta=-2$$, then $$4 \alpha^{2}+\beta^{2}+\lambda^{2}$$ is equal to :
Let S be the set of all values of $$\theta \in[-\pi, \pi]$$ for which the system of linear equations
$$x+y+\sqrt{3} z=0$$
$$-x+(\tan \theta) y+\sqrt{7} z=0$$
$$x+y+(\tan \theta) z=0$$
has non-trivial solution. Then $$\frac{120}{\pi} \sum_\limits{\theta \in \mathrm{s}} \theta$$ is equal to :
Let $$A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$$. If $$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 A))|=(16)^{n}$$, then $$n$$ is equal to :
Let $$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$ and $$Q=P A P^{T}$$. If $$P^{T} Q^{2007} P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$$, then $$2 a+b-3 c-4 d$$ equal to :
Let $$P$$ be a square matrix such that $$P^{2}=I-P$$. For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$P^{\alpha}+P^{\beta}=\gamma I-29 P$$ and $$P^{\alpha}-P^{\beta}=\delta I-13 P$$, then $$\alpha+\beta+\gamma-\delta$$ is equal to :
For the system of equations
$$x+y+z=6$$
$$x+2 y+\alpha z=10$$
$$x+3 y+5 z=\beta$$, which one of the following is NOT true?
If the system of equations
$$x+y+a z=b$$
$$2 x+5 y+2 z=6$$
$$x+2 y+3 z=3$$
has infinitely many solutions, then $$2 a+3 b$$ is equal to :
Let $$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$$, where $$\mathrm{a}_{\mathrm{ij}} \neq 0$$ for all $$\mathrm{i}, \mathrm{j}$$ and $$\mathrm{A}^{2}=\mathrm{I}$$. Let a be the sum of all diagonal elements of $$\mathrm{A}$$ and $$\mathrm{b}=|\mathrm{A}|$$. Then $$3 a^{2}+4 b^{2}$$ is equal to :
For the system of linear equations $$\alpha x+y+z=1,x+\alpha y+z=1,x+y+\alpha z=\beta$$, which one of the following statements is NOT correct?
If $$A = {1 \over 2}\left[ {\matrix{ 1 & {\sqrt 3 } \cr { - \sqrt 3 } & 1 \cr } } \right]$$, then :
Let $$S$$ denote the set of all real values of $$\lambda$$ such that the system of equations
$$\lambda x+y+z=1$$
$$x+\lambda y+z=1$$
$$x+y+\lambda z=1$$
is inconsistent, then $$\sum_\limits{\lambda \in S}\left(|\lambda|^{2}+|\lambda|\right)$$ is equal to
For the system of linear equations
$$x+y+z=6$$
$$\alpha x+\beta y+7 z=3$$
$$x+2 y+3 z=14$$
which of the following is NOT true ?
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 1} \cr 0 & {12} & { - 3} \cr } } \right)$$. Then the sum of the diagonal elements of the matrix $${(A + I)^{11}}$$ is equal to :
$$ \begin{aligned} & x-y+z=5 \\ & 2 x+2 y+\alpha z=8 \\ & 3 x-y+4 z=\beta \end{aligned} $$
has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of :
Let the system of linear equations
$$x+y+kz=2$$
$$2x+3y-z=1$$
$$3x+4y+2z=k$$
have infinitely many solutions. Then the system
$$(k+1)x+(2k-1)y=7$$
$$(2k+1)x+(k+5)y=10$$
has :
Let $$A=\left(\begin{array}{cc}\mathrm{m} & \mathrm{n} \\ \mathrm{p} & \mathrm{q}\end{array}\right), \mathrm{d}=|\mathrm{A}| \neq 0$$ and $$\mathrm{|A-d(A d j A)|=0}$$. Then
The set of all values of $$\mathrm{t\in \mathbb{R}}$$, for which the matrix
$$\left[ {\matrix{
{{e^t}} & {{e^{ - t}}(\sin t - 2\cos t)} & {{e^{ - t}}( - 2\sin t - \cos t)} \cr
{{e^t}} & {{e^{ - t}}(2\sin t + \cos t)} & {{e^{ - t}}(\sin t - 2\cos t)} \cr
{{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr
} } \right]$$ is invertible, is :
Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then
Consider the following system of equations
$$\alpha x+2y+z=1$$
$$2\alpha x+3y+z=1$$
$$3x+\alpha y+2z=\beta$$
for some $$\alpha,\beta\in \mathbb{R}$$. Then which of the following is NOT correct.
Let A, B, C be 3 $$\times$$ 3 matrices such that A is symmetric and B and C are skew-symmetric. Consider the statements
(S1) A$$^{13}$$ B$$^{26}$$ $$-$$ B$$^{26}$$ A$$^{13}$$ is symmetric
(S2) A$$^{26}$$ C$$^{13}$$ $$-$$ C$$^{13}$$ A$$^{26}$$ is symmetric
Then,
Let $$A = \left[ {\matrix{ {{1 \over {\sqrt {10} }}} & {{3 \over {\sqrt {10} }}} \cr {{{ - 3} \over {\sqrt {10} }}} & {{1 \over {\sqrt {10} }}} \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 & { - i} \cr 0 & 1 \cr } } \right]$$, where $$i = \sqrt { - 1} $$. If $$\mathrm{M=A^T B A}$$, then the inverse of the matrix $$\mathrm{AM^{2023}A^T}$$ is
Let $$x,y,z > 1$$ and $$A = \left[ {\matrix{ 1 & {{{\log }_x}y} & {{{\log }_x}z} \cr {{{\log }_y}x} & 2 & {{{\log }_y}z} \cr {{{\log }_z}x} & {{{\log }_z}y} & 3 \cr } } \right]$$. Then $$\mathrm{|adj~(adj~A^2)|}$$ is equal to
Let S$$_1$$ and S$$_2$$ be respectively the sets of all $$a \in \mathbb{R} - \{ 0\} $$ for which the system of linear equations
$$ax + 2ay - 3az = 1$$
$$(2a + 1)x + (2a + 3)y + (a + 1)z = 2$$
$$(3a + 5)x + (a + 5)y + (a + 2)z = 3$$
has unique solution and infinitely many solutions. Then
Let A be a 3 $$\times$$ 3 matrix such that $$\mathrm{|adj(adj(adj~A))|=12^4}$$. Then $$\mathrm{|A^{-1}~adj~A|}$$ is equal to
If the system of equations
$$x+2y+3z=3$$
$$4x+3y-4z=4$$
$$8x+4y-\lambda z=9+\mu$$
has infinitely many solutions, then the ordered pair ($$\lambda,\mu$$) is equal to :
If A and B are two non-zero n $$\times$$ n matrices such that $$\mathrm{A^2+B=A^2B}$$, then :
Let $$\alpha$$ be a root of the equation $$(a - c){x^2} + (b - a)x + (c - b) = 0$$ where a, b, c are distinct real numbers such that the matrix $$\left[ {\matrix{ {{\alpha ^2}} & \alpha & 1 \cr 1 & 1 & 1 \cr a & b & c \cr } } \right]$$ is singular. Then, the value of $${{{{(a - c)}^2}} \over {(b - a)(c - b)}} + {{{{(b - a)}^2}} \over {(a - c)(c - b)}} + {{{{(c - b)}^2}} \over {(a - c)(b - a)}}$$ is
Which of the following matrices can NOT be obtained from the matrix $$\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$$ by a single elementary row operation ?
If the system of equations
$$ \begin{aligned} &x+y+z=6 \\ &2 x+5 y+\alpha z=\beta \\ &x+2 y+3 z=14 \end{aligned} $$
has infinitely many solutions, then $$\alpha+\beta$$ is equal to
Let A and B be two $$3 \times 3$$ non-zero real matrices such that AB is a zero matrix. Then
Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be any two $$3 \times 3$$ symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?
Let the matrix $$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$$ and the matrix $$B_{0}=A^{49}+2 A^{98}$$. If $$B_{n}=A d j\left(B_{n-1}\right)$$ for all $$n \geq 1$$, then $$\operatorname{det}\left(B_{4}\right)$$ is equal to :
Let $$A=\left(\begin{array}{rr}4 & -2 \\ \alpha & \beta\end{array}\right)$$.
If $$\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$$, then $$\operatorname{det}(\mathrm{A})$$ is equal to _____________.
Let $$A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$$. Let $$\alpha, \beta \in \mathbb{R}$$ be such that $$\alpha A^{2}+\beta A=2 I$$. Then $$\alpha+\beta$$ is equal to
$$ \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: } $$
If the system of linear equations.
$$8x + y + 4z = - 2$$
$$x + y + z = 0$$
$$\lambda x - 3y = \mu $$
has infinitely many solutions, then the distance of the point $$\left( {\lambda ,\mu , - {1 \over 2}} \right)$$ from the plane $$8x + y + 4z + 2 = 0$$ is :
Let A be a 2 $$\times$$ 2 matrix with det (A) = $$-$$ 1 and det ((A + I) (Adj (A) + I)) = 4. Then the sum of the diagonal elements of A can be :
The number of real values of $$\lambda$$, such that the system of linear equations
2x $$-$$ 3y + 5z = 9
x + 3y $$-$$ z = $$-$$18
3x $$-$$ y + ($$\lambda$$2 $$-$$ | $$\lambda$$ |)z = 16
has no solutions, is
The number of $$\theta \in(0,4 \pi)$$ for which the system of linear equations
$$ \begin{aligned} &3(\sin 3 \theta) x-y+z=2 \\\\ &3(\cos 2 \theta) x+4 y+3 z=3 \\\\ &6 x+7 y+7 z=9 \end{aligned} $$
has no solution, is :
Let $$A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$$ and $$B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$$. Then the absolute value of the sum of all values of $$\alpha$$ for which det(AB) = 0 is :
Let A and B be two square matrices of order 2. If $$det\,(A) = 2$$, $$det\,(B) = 3$$ and $$\det \left( {(\det \,5(det\,A)B){A^2}} \right) = {2^a}{3^b}{5^c}$$ for some a, b, c, $$\in$$ N, then a + b + c is equal to :
Let $$A = \left( {\matrix{ 2 & { - 1} \cr 0 & 2 \cr } } \right)$$. If $$B = I - {}^5{C_1}(adj\,A) + {}^5{C_2}{(adj\,A)^2} - \,\,.....\,\, - {}^5{C_5}{(adj\,A)^5}$$, then the sum of all elements of the matrix B is
If the system of linear equations
2x + y $$-$$ z = 7
x $$-$$ 3y + 2z = 1
x + 4y + $$\delta$$z = k, where $$\delta$$, k $$\in$$ R has infinitely many solutions, then $$\delta$$ + k is equal to:
Let $$A = [{a_{ij}}]$$ be a square matrix of order 3 such that $${a_{ij}} = {2^{j - i}}$$, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ...... + A10 is equal to :
If the system of linear equations
$$2x + 3y - z = - 2$$
$$x + y + z = 4$$
$$x - y + |\lambda |z = 4\lambda - 4$$
where, $$\lambda$$ $$\in$$ R, has no solution, then
Let A be a matrix of order 3 $$\times$$ 3 and det (A) = 2. Then det (det (A) adj (5 adj (A3))) is equal to _____________.
Let $$f(x) = \left| {\matrix{ a & { - 1} & 0 \cr {ax} & a & { - 1} \cr {a{x^2}} & {ax} & a \cr } } \right|,\,a \in R$$. Then the sum of the squares of all the values of a, for which $$2f'(10) - f'(5) + 100 = 0$$, is
Let A and B be two 3 $$\times$$ 3 matrices such that $$AB = I$$ and $$|A| = {1 \over 8}$$. Then $$|adj\,(B\,adj(2A))|$$ is equal to
Let the system of linear equations
$$x + 2y + z = 2$$,
$$\alpha x + 3y - z = \alpha $$,
$$ - \alpha x + y + 2z = - \alpha $$
be inconsistent. Then $$\alpha$$ is equal to :
If the system of equations
$$\alpha$$x + y + z = 5, x + 2y + 3z = 4, x + 3y + 5z = $$\beta$$
has infinitely many solutions, then the ordered pair ($$\alpha$$, $$\beta$$) is equal to :
Let A be a 3 $$\times$$ 3 invertible matrix. If |adj (24A)| = |adj (3 adj (2A))|, then |A|2 is equal to :
The ordered pair (a, b), for which the system of linear equations
3x $$-$$ 2y + z = b
5x $$-$$ 8y + 9z = 3
2x + y + az = $$-$$1
has no solution, is :
The system of equations
$$ - kx + 3y - 14z = 25$$
$$ - 15x + 4y - kz = 3$$
$$ - 4x + y + 3z = 4$$
is consistent for all k in the set
Let A be a 3 $$\times$$ 3 real matrix such that
$$A\left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right);A\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ { - 1} \cr 0 \cr 1 \cr } } \right)$$ and $$A\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 2 \cr } } \right)$$.
If $$X = {({x_1},{x_2},{x_3})^T}$$ and I is an identity matrix of order 3, then the system $$(A - 2I)X = \left( {\matrix{ 4 \cr 1 \cr 1 \cr } } \right)$$ has :
Let $$A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$$. If M and N are two matrices given by $$M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $$ and $$N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $$ then MN2 is :
Let the system of linear equations
x + y + $$\alpha$$z = 2
3x + y + z = 4
x + 2z = 1
have a unique solution (x$$^ * $$, y$$^ * $$, z$$^ * $$). If ($$\alpha$$, x$$^ * $$), (y$$^ * $$, $$\alpha$$) and (x$$^ * $$, $$-$$y$$^ * $$) are collinear points, then the sum of absolute values of all possible values of $$\alpha$$ is
The number of values of $$\alpha$$ for which the system of equations :
x + y + z = $$\alpha$$
$$\alpha$$x + 2$$\alpha$$y + 3z = $$-$$1
x + 3$$\alpha$$y + 5z = 4
is inconsistent, is
Let S = {$$\sqrt{n}$$ : 1 $$\le$$ n $$\le$$ 50 and n is odd}.
Let a $$\in$$ S and $$A = \left[ {\matrix{ 1 & 0 & a \cr { - 1} & 1 & 0 \cr { - a} & 0 & 1 \cr } } \right]$$.
If $$\sum\limits_{a\, \in \,S}^{} {\det (adj\,A) = 100\lambda } $$, then $$\lambda$$ is equal to :
$$-$$x + y + 2z = 0
3x $$-$$ ay + 5z = 1
2x $$-$$ 2y $$-$$ az = 7
Let S1 be the set of all a$$\in$$R for which the system is inconsistent and S2 be the set of all a$$\in$$R for which the system has infinitely many solutions. If n(S1) and n(S2) denote the number of elements in S1 and S2 respectively, then
x + (cos $$\gamma$$)y + (cos $$\beta$$)z = 0
(cos $$\gamma$$)x + y + (cos $$\alpha$$)z = 0
(cos $$\beta$$)x + (cos $$\alpha$$)y + z = 0
has :
2x + y + z = 5
x $$-$$ y + z = 3
x + y + az = b
has no solution, then :
the determinant $$\left| {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right|$$ is equal to :
x + y + z = 4,
3x + 2y + 5z = 3,
9x + 4y + (28 + [$$\lambda$$])z = [$$\lambda$$] has a solution is :
$$(1 + {\cos ^2}\theta )x + {\sin ^2}\theta y + 4\sin 3\,\theta z = 0$$
$${\cos ^2}\theta x + (1 + {\sin ^2}\theta )y + 4\sin 3\,\theta z = 0$$
$${\cos ^2}\theta x + {\sin ^2}\theta y + (1 + 4\sin 3\,\theta )z = 0$$
has a non-trivial solution, then the value of $$\theta$$ is :
of $$\left| {\matrix{ {\sin x} & {\cos x} & {\cos x} \cr {\cos x} & {\sin x} & {\cos x} \cr {\cos x} & {\cos x} & {\sin x} \cr } } \right| = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is :
2x + 3y + 6z = 8
x + 2y + az = 5
3x + 5y + 9z = b
has no solution, are :
3x $$-$$ y + 4z = 3,
x + 2y $$-$$ 3z = $$-$$2
6x + 5y + kz = $$-$$3,
has infinitely many solutions, is :
4x + $$\lambda$$y + 2z = 0
2x $$-$$ y + z = 0
$$\mu$$x + 2y + 3z = 0, $$\lambda$$, $$\mu$$$$\in$$R.
has a non-trivial solution. Then which of the following is true?
x + 2y $$-$$ 3z = a
2x + 6y $$-$$ 11z = b
x $$-$$ 2y + 7z = c,
where a, b and c are real constants. Then the system of equations :
2x + 3y + 2z = 9
3x + 2y + 2z = 9
x $$-$$ y + 4z = 8
$$x - 2y = 1,x - y + kz = - 2,ky + 4z = 6,k \in R$$,
consider the following statements :
(A) The system has unique solution if $$k \ne 2,k \ne - 2$$.
(B) The system has unique solution if k = $$-$$2
(C) The system has unique solution if k = 2
(D) The system has no solution if k = 2
(E) The system has infinite number of solutions if k $$ \ne $$ $$-$$2.
Which of the following statements are correct?
3x - 2y - kz = 10
2x - 4y - 2z = 6
x+2y - z = 5m
is inconsistent if :
If B = A + A4 , then det (B) :
$$\left| {\matrix{ {{{\cos }^2}x} & {1 + {{\sin }^2}x} & {\sin 2x} \cr {1 + {{\cos }^2}x} & {{{\sin }^2}x} & {\sin 2x} \cr {{{\cos }^2}x} & {{{\sin }^2}x} & {1 + \sin 2x} \cr } } \right|$$
Then the ordered pair (m, M) is equal to :
x + y + z = 2
x + 2y + 3z = 5
x + 3y + $$\lambda $$z = $$\mu $$
has infinitely many solutions are, respectively:
are non-zero distinct real numbers, then
$$\left| {\matrix{ x & {a + y} & {x + a} \cr y & {b + y} & {y + b} \cr z & {c + y} & {z + c} \cr } } \right|$$ is equal to :
x + y + 3z = 0
x + 3y + k2z = 0
3x + y + 3z = 0
has a non-zero solution (x, y, z) for some k $$ \in $$ R, then x + $$\left( {{y \over z}} \right)$$ is equal to :
$$f\left( \theta \right) = \left| {\matrix{ { - {{\sin }^2}\theta } & { - 1 - {{\sin }^2}\theta } & 1 \cr { - {{\cos }^2}\theta } & { - 1 - {{\cos }^2}\theta } & 1 \cr {12} & {10} & { - 2} \cr } } \right|$$ are m and M respectively, then the ordered pair (m,M) is equal to :
2x1 - 4x2 + $$\lambda $$x3 = 1
x1 - 6x2 + x3 = 2
$$\lambda $$x1 - 10x2 + 4x3 = 3
is inconsistent for:
solutions of the system of linear equations,
Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. if
$${x_1} = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, $${x_2} = \left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right]$$, $${x_3} = \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]$$
$${b_1} = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$, $${b_2} = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$ and $${b_3} = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$,
then the determinant of A is equal to :
x+y+z=2
2x+4y–z=6
3x+2y+$$\lambda $$z=$$\mu $$
has infinitely many solutions, then
and $${A^5} = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$, where $$i = \sqrt { - 1} $$ then which one of the following is not true?
adj A = $$\left[ {\matrix{ 2 & { - 1} & 1 \cr { - 1} & 0 & 2 \cr 1 & { - 2} & { - 1} \cr } } \right]$$ and B = adj(adj A).
If |A| = $$\lambda $$ and |(B-1)T| = $$\mu $$ , then the ordered pair,
(|$$\lambda $$|, $$\mu $$) is equal to :
Ax3 + Bx2 + Cx + D, then B + C is equal to :
a3 + b3 + c3 = 2. If the matrix
A = $$\left( {\matrix{ a & b & c \cr b & c & a \cr c & a & b \cr } } \right)$$
satisfies ATA = I, then a value of abc can be :
x2 + y2 + z2 = 1} where
$$P = \left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]$$,
then the set A :
2x – y + 2z = 2
x – 2y + $$\lambda $$z = –4
x + $$\lambda $$y + z = 4
has no solution. Then the set S :
(P) If A $$ \ne $$ I2 , then |A| = –1
(Q) If |A| = 1, then tr(A) = 2,
where I2 denotes 2 $$ \times $$ 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then :
7x + 6y – 2z = 0
3x + 4y + 2z = 0
x – 2y – 6z = 0, has
B = adjA and C = 3A, then $${{\left| {adjB} \right|} \over {\left| C \right|}}$$ is equal to :
x + 4y – 2z = 1
x + 7y – 5z = b
x + 5y + $$\alpha $$z = 5
is a line in R3, then $$\alpha $$ + $$\beta $$ is equal to :
$$\lambda $$x + 2y + 2z = 5
2$$\lambda $$x + 3y + 5z = 8
4x + $$\lambda $$y + 6z = 10 has
x + 2y + 3z = 1
3x + 4y + 5z = $$\mu $$
4x + 4y + 4z = $$\delta $$
is inconsistent ?
matrix A = $${1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & 1 & 1 \cr 1 & \alpha & {{\alpha ^2}} \cr 1 & {{\alpha ^2}} & {{\alpha ^4}} \cr } } \right]$$
then the matrix A31 is equal to
2x + 2ay + az = 0
2x + 3by + bz = 0
2x + 4cy + cz = 0,
where a, b, c $$ \in $$ R are non-zero distinct; has a non-zero solution, then:
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$$, is :
$$\left| {\matrix{ x & { - 6} & { - 1} \cr 2 & { - 3x} & {x - 3} \cr { - 3} & {2x} & {x + 2} \cr } } \right| = 0$$, is equal to :
$${\Delta _2} = \left| {\matrix{ x & {\sin 2\theta } & {\cos 2\theta } \cr { - \sin 2\theta } & { - x} & 1 \cr {\cos 2\theta } & 1 & x \cr } } \right|$$, $$x \ne 0$$ ;
then for all $$\theta \in \left( {0,{\pi \over 2}} \right)$$ :
x + y + z = 5
x + 2y + 2z = 6
x + 3y + $$\lambda $$z = $$\mu $$, ($$\lambda $$, $$\mu $$ $$ \in $$ R), has infinitely many solutions, then the value of $$\lambda $$ + $$\mu $$ is :
$$A = \left( {\matrix{ 0 & {2y} & 1 \cr {2x} & y & { - 1} \cr {2x} & { - y} & 1 \cr } } \right)$$
(x, y $$ \in $$ R,x $$ \ne $$ y) for which ATA = 3I3 is :-
$$$\left| {\matrix{ {y + 1} & \alpha & \beta \cr \alpha & {y + \beta } & 1 \cr \beta & 1 & {y + \alpha } \cr } } \right|$$$ is equal to
then the inverse of $$\left[ {\matrix{ 1 & n \cr 0 & 1 \cr } } \right]$$ is
A = $$\left[ {\matrix{ 1 & 1 & 1 \cr 2 & b & c \cr 4 & {{b^2}} & {{c^2}} \cr } } \right]$$. If det(A) $$ \in $$ [2, 16], then c lies in the interval :
such that $${A^{32}} = \left( {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right)$$ then a value of $$\alpha $$ is
x – cy – cz = 0
cx – y + cz = 0
cx + cy – z = 0
has a non-trivial solution, is :
then for all $$\theta $$ $$ \in $$ $$\left( {{{3\pi } \over 4},{{5\pi } \over 4}} \right)$$, det (A) lies in the interval :
x – 2y – 2z = $$\lambda $$x
x + 2y + z = $$\lambda $$y
– x – y = $$\lambda $$z
has a non-trivial solutions :
(1 + $$\alpha $$) x + $$\beta $$y + z = 2
$$\alpha $$x + (1 + $$\beta $$)y + z = 3
$$\alpha $$x + $$\beta $$y + 2z = 2
has a unique solution, is :
Then $${{{q_{21}} + {q_{31}}} \over {{q_{32}}}}$$ is equal to :
then det (BA–1 BT) is equal to :
= (a + b + c) (x + a + b + c)2, x $$ \ne $$ 0,
then x is equal to :
2x + 2y + 3z = a
3x – y + 5z = b
x – 3y + 2z = c
where a, b, c are non zero real numbers, has more one solution, then :
Then the minimum value of $${{\det \left( A \right)} \over b}$$ is -
x + 3y + 7z = 0
$$-$$ x + 4y + 7z = 0
(sin3$$\theta $$)x + (cos2$$\theta $$)y + 2z = 0.
has a non-trival solution, is -
x + y + z = 5
x + 2y + 3z = 9
x + 3y + az = $$\beta $$
has infinitely many solutions, then $$\beta $$ $$-$$ $$\alpha $$ equals -
$$A = \left[ {\matrix{ { - 2} & {4 + d} & {\left( {\sin \theta } \right) - 2} \cr 1 & {\left( {\sin \theta } \right) + 2} & d \cr 5 & {\left( {2\sin \theta } \right) - d} & {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$
$$\theta \in \left[ {0,2\pi } \right]$$ If the minimum value of det(A) is 8, then a value of d is -
x $$-$$ 4y + 7z = g
3y $$-$$ 5z = h
$$-$$2x + 5y $$-$$ 9z = k
is consistent, then :
then A is :
x + y + z = 2
2x + 3y + 2z = 5
2x + 3y + (a2 – 1) z = a + 1 then
(k + 2)x + 10y = k
kx + (k +3)y = k -1
has no solution, is :
then the ordered pair (A, B) is equal to :
x + ky + 3z = 0
3x + ky - 2z = 0
2x + 4y - 3z = 0
has a non-zero solution (x, y, z), then $${{xz} \over {{y^2}}}$$ is equal to
x + ay + z = 3
x + 2y + 2z = 6
x + 5y + 3z = b
has no solution, then :
Then A2 equals :
x + y + z = 2
2x + y $$-$$ z = 3
3x + 2y + kz = 4
has a unique solution. Then S is :
$$S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\matrix{ 0 & {\cos x} & { - \sin x} \cr {\sin x} & 0 & {\cos x} \cr {\cos x} & {\sin x} & 0 \cr } } \right| = 0} \right\},$$
then $$\sum\limits_{x \in S} {\tan \left( {{\pi \over 3} + x} \right)} $$ is equal to :
2x + 4y $$-$$ $$\lambda $$z = 0
4x + $$\lambda $$y + 2z = 0
$$\lambda $$x + 2y + 2z = 0
has infinitely many solutions, is :
then adj(3A2 + 12A) is equal to
x + y + z = 1
x + ay + z = 1
ax + by + z = 0
has no solution, then S is :
then the determinant of the matrix (A2016 − 2A2015 − A2014) is :
Statement - I :
A$$-$$1 = $${1 \over 7}$$ (5I $$-$$ A).
Statement - II :
The polynomial A3 $$-$$ 2A2 $$-$$ 3A + I can be reduced to 5(A $$-$$ 4I).
Then :
$$\left| {\matrix{ {\cos x} & {\sin x} & {\sin x} \cr {\sin x} & {\cos x} & {\sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right| = 0$$ in the interval $$\left[ { - {\pi \over 4},{\pi \over 4}} \right]$$ is :
Q = PAPT, then PT Q2015 P is :
The system of linear equations
$$\matrix{ {x + \lambda y - z = 0} \cr {\lambda x - y - z = 0} \cr {x + y - \lambda z = 0} \cr } $$
has a non-trivial solution for :$$\matrix{ {2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}} \cr {2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}} \cr { - {x_1} + 2{x_2} = \lambda {x_3}} \cr } $$
has a non-trivial solution
$$A{A^T} = 9\text{I},$$ where $$I$$ is $$3 \times 3$$ identity matrix, then the ordered
pair $$(a, b)$$ is equal to :
$$ = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2},$$ then $$K$$ is equal to :
$$B = {A^{ - 1}}A',$$ then $$BB'$$ equals:
has no solution, is
$$\left| A \right| = 4,$$ then $$\alpha $$ is equal to :
$${P^2}Q = {Q^2}P$$ then determinant of $$\left( {{P^2} + {Q^2}} \right)$$ is equal to :
that $$A{u_1} = \left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right)$$ and $$A{u_2} = \left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),$$ then $${u_1} + {u_2}$$ is equal to :
Statement - 1 : $$A(BA)$$ and $$(AB)$$$$A$$ are symmetric matrices.
Statement - 2 : $$AB$$ is symmetric matrix if matrix multiplication of $$A$$ with $$B$$ is commutative.
$$4x + ky + 2z = 0,kx + 4y + z = 0$$ and $$2x+2y+z=0$$ possess a non-zero solution is :
where $$I$$ is $$2 \times 2$$ identity matrix. Define
$$Tr$$$$(A)=$$ sum of diagonal elements of $$A$$ and $$\left| A \right| = $$ determinant of matrix $$A$$.
Statement- 1: $$Tr$$$$(A)=0$$.
Statement- 2: $$\left| A \right| = 1$$ .
The system has :
Statement - 1 : $$adj\left( {adj\,A} \right) = A$$
Statement - 2 :$$\left| {adj\,A} \right| = \left| A \right|$$
$$\left| {\matrix{
a & {a + 1} & {a - 1} \cr
{ - b} & {b + 1} & {b - 1} \cr
c & {c - 1} & {c + 1} \cr
} } \right| + \left| {\matrix{
{a + 1} & {b + 1} & {c - 1} \cr
{a - 1} & {b - 1} & {c + 1} \cr
{{{\left( { - 1} \right)}^{n + 2}}a} & {{{\left( { - 1} \right)}^{n + 1}}b} & {{{\left( { - 1} \right)}^n}c} \cr
} } \right| = 0$$
then the value of $$n$$ :
Statement-1 : If $$A \ne I$$ and $$A \ne - I$$, then det$$(A)=-1$$
Statement- 2 : If $$A \ne I$$ and $$A \ne - I$$, then tr $$(A)$$ $$ \ne 0$$.
Then which one of the following is true?
$${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$ then which of the following will be always true?
$$\matrix{ {\alpha \,x + y + z = \alpha - 1} \cr {x + \alpha y + z = \alpha - 1} \cr {x + y + \alpha \,z = \alpha - 1} \cr } $$
has no solutions, if $$\alpha $$ is :
is equal to :
f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|,$$
then f$$(x)$$ is a polynomial of degree :
statement about the matrix $$A$$ is
the inverse of matrix $$A$$, then $$\alpha $$ is
$$\left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|,$$ is
$$\Delta = \left| {\matrix{ 1 & {{\omega ^n}} & {{\omega ^{2n}}} \cr {{\omega ^n}} & {{\omega ^{2n}}} & 1 \cr {{\omega ^{2n}}} & 1 & {{\omega ^n}} \cr } } \right|$$ is equal to
$$x + 2ay + az = 0;$$ $$x + 3by + bz = 0;\,\,x + 4cy + cz = 0;$$
has a non - zero solution, then $$a, b, c$$.
$$\left| {\matrix{ a & b & {ax + b} \cr b & c & {bx + c} \cr {ax + b} & {bx + c} & 0 \cr } } \right|$$ is equal to
Numerical
Let $S=\left\{m \in \mathbf{Z}: A^{m^2}+A^m=3 I-A^{-6}\right\}$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. Then $n(S)$ is equal to __________.
Let M denote the set of all real matrices of order $3 \times 3$ and let $\mathrm{S}=\{-3,-2,-1,1,2\}$. Let
$$\begin{aligned} & \mathrm{S}_1=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_2=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=-\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_3=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: a_{11}+a_{22}+a_{33}=0 \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\} . \end{aligned}$$
If $n\left(S_1 \cup S_2 \cup S_3\right)=125 \alpha$, then $\alpha$ equls __________.
Let A be a $3 \times 3$ matrix such that $\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\mathrm{O}$ for all nonzero $3 \times 1$ matrices $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. If $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -5\end{array}\right], \mathrm{A}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$, and $\operatorname{det}(\operatorname{adj}(2(\mathrm{~A}+\mathrm{I})))=2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha^2+\beta^2+\gamma^2$ is
Let $A$ be a square matrix of order 3 such that $\operatorname{det}(A)=-2$ and $\operatorname{det}(3 \operatorname{adj}(-6 \operatorname{adj}(3 A)))=2^{m+n} \cdot 3^{m n}, m>n$. Then $4 m+2 n$ is equal to __________.
Consider the matrices : $$A=\left[\begin{array}{cc}2 & -5 \\ 3 & m\end{array}\right], B=\left[\begin{array}{l}20 \\ m\end{array}\right]$$ and $$X=\left[\begin{array}{l}x \\ y\end{array}\right]$$. Let the set of all $$m$$, for which the system of equations $$A X=B$$ has a negative solution (i.e., $$x<0$$ and $$y<0$$), be the interval $$(a, b)$$. Then $$8 \int_\limits a^b|A| d m$$ is equal to _________.
Let $$A$$ be a non-singular matrix of order 3. If $$\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$$ and $$\operatorname{det}(3\operatorname{adj}(2 \mathrm{A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$$, then $$|3 \mathrm{~m}+2 \mathrm{n}|$$ is equal to _________.
Let $$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$$. If the sum of the diagonal elements of $$A^{13}$$ is $$3^n$$, then $$n$$ is equal to ________.
If the system of equations
$$\begin{aligned} & 2 x+7 y+\lambda z=3 \\ & 3 x+2 y+5 z=4 \\ & x+\mu y+32 z=-1 \end{aligned}$$
has infinitely many solutions, then $$(\lambda-\mu)$$ is equal to ______ :
Let $$\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$$. If $$x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$$ for some $$x, y, z \in \mathbb{R}, x y z \neq 0$$, then $$6 \alpha+4 \beta+\gamma$$ is equal to _________.
Let $$A$$ be a $$2 \times 2$$ symmetric matrix such that $$A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$$ and the determinant of $$A$$ be 1 . If $$A^{-1}=\alpha A+\beta I$$, where $$I$$ is an identity matrix of order $$2 \times 2$$, then $$\alpha+\beta$$ equals _________.
Let $$A$$ be a square matrix of order 2 such that $$|A|=2$$ and the sum of its diagonal elements is $$-$$3 . If the points $$(x, y)$$ satisfying $$\mathrm{A}^2+x \mathrm{~A}+y \mathrm{I}=\mathrm{O}$$ lie on a hyperbola, whose transverse axis is parallel to the $$x$$-axis, eccentricity is $$\mathrm{e}$$ and the length of the latus rectum is $$l$$, then $$\mathrm{e}^4+l^4$$ is equal to ________.
Let $$A$$ be a $$3 \times 3$$ matrix of non-negative real elements such that $$A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$$. Then the maximum value of $$\operatorname{det}(\mathrm{A})$$ is _________.
Let A be a $$3 \times 3$$ matrix and $$\operatorname{det}(A)=2$$. If $$n=\operatorname{det}(\underbrace{\operatorname{adj}(\operatorname{adj}(\ldots . .(\operatorname{adj} A))}_{2024-\text { times }}))$$, then the remainder when $$n$$ is divided by 9 is equal to __________.
Let for any three distinct consecutive terms $$a, b, c$$ of an A.P, the lines $$a x+b y+c=0$$ be concurrent at the point $$P$$ and $$Q(\alpha, \beta)$$ be a point such that the system of equations
$$\begin{aligned} & x+y+z=6, \\ & 2 x+5 y+\alpha z=\beta \text { and } \end{aligned}$$
$$x+2 y+3 z=4$$, has infinitely many solutions. Then $$(P Q)^2$$ is equal to _________.
Let $$A$$ be a $$2 \times 2$$ real matrix and $$I$$ be the identity matrix of order 2. If the roots of the equation $$|\mathrm{A}-x \mathrm{I}|=0$$ be $$-1$$ and 3, then the sum of the diagonal elements of the matrix $$\mathrm{A}^2$$ is
$$ \mathrm{AB}_1=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right], \mathrm{AB}_2=\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right], \quad \mathrm{AB}_3=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] $$
If $\alpha=|B|$ and $\beta$ is the sum of all the diagonal elements of $B$, then $\alpha^3+\beta^3$ is equal to ____________.
Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.
Let $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ 1 & c & 0\end{array}\right]$$, where $$a, c \in \mathbb{R}$$. If $$A^{3}=A$$ and the positive value of $$a$$ belongs to the interval $$(n-1, n]$$, where $$n \in \mathbb{N}$$, then $$n$$ is equal to ___________.
Let $$\mathrm{S}$$ be the set of values of $$\lambda$$, for which the system of equations
$$6 \lambda x-3 y+3 z=4 \lambda^{2}$$,
$$2 x+6 \lambda y+4 z=1$$,
$$3 x+2 y+3 \lambda z=\lambda$$ has no solution. Then $$12 \sum_\limits{i \in S}|\lambda|$$ is equal to ___________.
Let A be a symmetric matrix such that $$\mathrm{|A|=2}$$ and $$\left[ {\matrix{ 2 & 1 \cr 3 & {{3 \over 2}} \cr } } \right]A = \left[ {\matrix{ 1 & 2 \cr \alpha & \beta \cr } } \right]$$. If the sum of the diagonal elements of A is $$s$$, then $$\frac{\beta s}{\alpha^2}$$ is equal to __________.
Let $$\mathrm{A_1,A_2,A_3}$$ be the three A.P. with the same common difference d and having their first terms as $$\mathrm{A,A+1,A+2}$$, respectively. Let a, b, c be the $$\mathrm{7^{th},9^{th},17^{th}}$$ terms of $$\mathrm{A_1,A_2,A_3}$$, respective such that $$\left| {\matrix{ a & 7 & 1 \cr {2b} & {17} & 1 \cr c & {17} & 1 \cr } } \right| + 70 = 0$$.
If $$a=29$$, then the sum of first 20 terms of an AP whose first term is $$c-a-b$$ and common difference is $$\frac{d}{12}$$, is equal to ___________.
Let $$X=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$$ and $$A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$$. For $$\mathrm{k} \in N$$, if $$X^{\prime} A^{k} X=33$$, then $$\mathrm{k}$$ is equal to _______.
Let p and p + 2 be prime numbers and let
$$ \Delta=\left|\begin{array}{ccc} \mathrm{p} ! & (\mathrm{p}+1) ! & (\mathrm{p}+2) ! \\ (\mathrm{p}+1) ! & (\mathrm{p}+2) ! & (\mathrm{p}+3) ! \\ (\mathrm{p}+2) ! & (\mathrm{p}+3) ! & (\mathrm{p}+4) ! \end{array}\right| $$
Then the sum of the maximum values of $$\alpha$$ and $$\beta$$, such that $$\mathrm{p}^{\alpha}$$ and $$(\mathrm{p}+2)^{\beta}$$ divide $$\Delta$$, is __________.
Let $$A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$$ and $$B=\left[\begin{array}{cc}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \mathbf{R}$$. Let $$\alpha_{1}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$$ and $$\alpha_{2}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}$$. Then $$\left|\alpha_{1}-\alpha_{2}\right|$$ is equal to ___________.
Consider a matrix $$A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$$, where $$\alpha, \beta, \gamma$$ are three distinct natural numbers.
If $$\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))}{(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma-\alpha)^{16}}=2^{32} \times 3^{16}$$, then the number of such 3 - tuples $$(\alpha, \beta, \gamma)$$ is ____________.
Let $$S$$ be the set containing all $$3 \times 3$$ matrices with entries from $$\{-1,0,1\}$$. The total number of matrices $$A \in S$$ such that the sum of all the diagonal elements of $$A^{\mathrm{T}} A$$ is 6 is ____________.
The number of matrices $$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$$, where $$a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}$$, such that $$A=A^{-1}$$, is ___________.
Let $$A=\left[\begin{array}{lll}
1 & a & a \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right], a, b \in \mathbb{R}$$. If for some
$$n \in \mathbb{N}, A^{n}=\left[\begin{array}{ccc}
1 & 48 & 2160 \\
0 & 1 & 96 \\
0 & 0 & 1
\end{array}\right]
$$ then $$n+a+b$$ is equal to ____________.
Let $$A=\left(\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$$ and $$B=A-I$$. If $$\omega=\frac{\sqrt{3} i-1}{2}$$, then the number of elements in the $$\operatorname{set}\left\{n \in\{1,2, \ldots, 100\}: A^{n}+(\omega B)^{n}=A+B\right\}$$ is equal to ____________.
Let $$M = \left[ {\matrix{ 0 & { - \alpha } \cr \alpha & 0 \cr } } \right]$$, where $$\alpha$$ is a non-zero real number an $$N = \sum\limits_{k = 1}^{49} {{M^{2k}}} $$. If $$(I - {M^2})N = - 2I$$, then the positive integral value of $$\alpha$$ is ____________.
If the system of linear equations
$$2x - 3y = \gamma + 5$$,
$$\alpha x + 5y = \beta + 1$$, where $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R has infinitely many solutions then the value
of | 9$$\alpha$$ + 3$$\beta$$ + 5$$\gamma$$ | is equal to ____________.
Let $$A = \left( {\matrix{ {1 + i} & 1 \cr { - i} & 0 \cr } } \right)$$ where $$i = \sqrt { - 1} $$. Then, the number of elements in the set { n $$\in$$ {1, 2, ......, 100} : An = A } is ____________.
The positive value of the determinant of the matrix A, whose
Adj(Adj(A)) = $$\left( {\matrix{ {14} & {28} & { - 14} \cr { - 14} & {14} & {28} \cr {28} & { - 14} & {14} \cr } } \right)$$, is _____________.
Let $$X = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right],\,Y = \alpha I + \beta X + \gamma {X^2}$$ and $$Z = {\alpha ^2}I - \alpha \beta X + ({\beta ^2} - \alpha \gamma ){X^2}$$, $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R. If $${Y^{ - 1}} = \left[ {\matrix{ {{1 \over 5}} & {{{ - 2} \over 5}} & {{1 \over 5}} \cr 0 & {{1 \over 5}} & {{{ - 2} \over 5}} \cr 0 & 0 & {{1 \over 5}} \cr } } \right]$$, then ($$\alpha$$ $$-$$ $$\beta$$ + $$\gamma$$)2 is equal to ____________.
Let $$A = \left( {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right)$$ and $$B = \left( {\matrix{ { - 1} & 2 \cr { - 1} & 2 \cr } } \right)$$. Then the number of elements in the set {(n, m) : n, m $$\in$$ {1, 2, .........., 10} and nAn + mBm = I} is ____________.
Let $$S = \left\{ {\left( {\matrix{ { - 1} & a \cr 0 & b \cr } } \right);a,b \in \{ 1,2,3,....100\} } \right\}$$ and let $${T_n} = \{ A \in S:{A^{n(n + 1)}} = I\} $$. Then the number of elements in $$\bigcap\limits_{n = 1}^{100} {{T_n}} $$ is ___________.
2x + y $$-$$ z = 3
x $$-$$ y $$-$$ z = $$\alpha$$
3x + 3y + $$\beta$$z = 3
has infinitely many solution, then $$\alpha$$ + $$\beta$$ $$-$$ $$\alpha$$$$\beta$$ is equal to _____________.
x + y $$-$$ z = 2, x + 2y + $$\alpha$$z = 1, 2x $$-$$ y + z = $$\beta$$. If the system has infinite solutions, then $$\alpha$$ + $$\beta$$ is equal to ______________.
where $${a_{ij}} = \left\{ {\matrix{ {{{( - 1)}^{j - i}}} & {if} & {i < j,} \cr 2 & {if} & {i = j,} \cr {{{( - 1)}^{i + j}}} & {if} & {i > j} \cr } } \right.$$
then $$\det (3Adj(2{A^{ - 1}}))$$ is equal to _____________.
$$X = {1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & { - 1} \cr 1 & k \cr } } \right]$$, and k$$\in$$R.
If $$a_1^2$$ + $$a_2^2$$ = $${2 \over 3}$$(b$$_1^2$$ + b$$_2^2$$) and (k2 + 1) b$$_2^2$$ $$\ne$$ $$-$$2b1b2, then the value of k is __________.
$$A = \left[ {\matrix{ 2 & 7 & {{\omega ^2}} \cr { - 1} & { - \omega } & 1 \cr 0 & { - \omega } & { - \omega + 1} \cr } } \right]$$ where
$$\omega = {{ - 1 + i\sqrt 3 } \over 2}$$, and I3 be the identity matrix of order 3. If the
determinant of the matrix (P$$-$$1AP$$-$$I3)2 is $$\alpha$$$$\omega$$2, then the value of $$\alpha$$ is equal to ______________.
$${A^{20}} + \alpha {A^{19}} + \beta A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 1 \cr } } \right]$$ for some real numbers $$\alpha$$ and $$\beta$$, then $$\beta$$ $$-$$ $$\alpha$$ is equal to ___________.
$$({I_2} + A){({I_2} - A)^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then $$13({a^2} + {b^2})$$ is equal to
kx + y + 2z = 1
3x $$-$$ y $$-$$ 2z = 2
$$-$$2x $$-$$2y $$-$$4z = 3
has infinitely many solutions, then k is equal to __________.
If q23 = $$ - {k \over 8}$$ and |Q| = $${{{k^2}} \over 2}$$, then a2 + k2 is equal to ______.
$$\left( {\lambda - 1} \right)x + \left( {3\lambda + 1} \right)y + 2\lambda z = 0$$
$$\left( {\lambda - 1} \right)x + \left( {4\lambda - 2} \right)y + \left( {\lambda + 3} \right)z = 0$$
$$2x + \left( {3\lambda + 1} \right)y + 3\left( {\lambda - 1} \right)z = 0$$
has non-zero solutions, is ________ .
x - 2y + 3z = 9
2x + y + z = b
x - 7y + az = 24,
has infinitely many solutions, then a - b is equal to.........
x – 2y + 5z = 0
–2x + 4y + z = 0
–7x + 14y + 9z = 0
such that 15 $$ \le $$ x2 + y2 + z2 $$ \le $$ 150. Then, the number of elements in the set S is equal to ______ .
If a11 = 109, then a22 is equal to _______ .
x + y + z = 6
x + 2y + 3z = 10
3x + 2y + $$\lambda $$z = $$\mu $$
has more than two solutions, then $$\mu $$ - $$\lambda $$2 is equal to ______.