Matrices and Determinants · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

1

Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:

JEE Main 2025 (Online) 29th January Evening Shift
2

Let $ \alpha, \beta \ (\alpha \neq \beta) $ be the values of $ m $, for which the equations $ x+y+z=1 $, $ x+2y+4z=m $ and $ x+4y+10z=m^2 $ have infinitely many solutions. Then the value of $ \sum\limits_{n=1}^{10} (n^{\alpha}+n^{\beta}) $ is equal to :

JEE Main 2025 (Online) 29th January Evening Shift
3

Let $\mathrm{A}=\left[a_{i j}\right]$ be a matrix of order $3 \times 3$, with $a_{i j}=(\sqrt{2})^{i+j}$. If the sum of all the elements in the third row of $A^2$ is $\alpha+\beta \sqrt{2}, \alpha, \beta \in \mathbf{Z}$, then $\alpha+\beta$ is equal to :

JEE Main 2025 (Online) 29th January Evening Shift
4

Let $ A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} $. If $ A_{ij} $ is the cofactor of $ a_{ij} $, $ C_{ij} = \sum\limits_{k=1}^{2} a_k A_{jk} , 1 \leq i, j \leq 2 $, and $ C=[C_{ij}] $, then $ 8|C| $ is equal to :

JEE Main 2025 (Online) 29th January Morning Shift
5

Let M and m respectively be the maximum and the minimum values of

$f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$

Then $ M^4 - m^4 $ is equal to :

JEE Main 2025 (Online) 29th January Morning Shift
6
Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :
JEE Main 2025 (Online) 28th January Evening Shift
7

For some $a, b,$ let $f(x)=\left|\begin{array}{ccc}\mathrm{a}+\frac{\sin x}{x} & 1 & \mathrm{~b} \\ \mathrm{a} & 1+\frac{\sin x}{x} & \mathrm{~b} \\ \mathrm{a} & 1 & \mathrm{~b}+\frac{\sin x}{x}\end{array}\right|, x \neq 0, \lim \limits_{x \rightarrow 0} f(x)=\lambda+\mu \mathrm{a}+\nu \mathrm{b}.$ Then $(\lambda+\mu+v)^2$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
8

If the system of equations

$$ \begin{aligned} & x+2 y-3 z=2 \\ & 2 x+\lambda y+5 z=5 \\ & 14 x+3 y+\mu z=33 \end{aligned} $$

has infinitely many solutions, then $\lambda+\mu$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
9

If the system of equations

$$\begin{aligned} & 2 x-y+z=4 \\ & 5 x+\lambda y+3 z=12 \\ & 100 x-47 y+\mu z=212 \end{aligned}$$

has infinitely many solutions, then $\mu-2 \lambda$ is equal to

JEE Main 2025 (Online) 24th January Morning Shift
10

The system of equations

$$\begin{aligned} & x+y+z=6, \\ & x+2 y+5 z=9, \\ & x+5 y+\lambda z=\mu, \end{aligned}$$

has no solution if

JEE Main 2025 (Online) 23rd January Evening Shift
11

Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :

JEE Main 2025 (Online) 23rd January Evening Shift
12
 

If the system of equations

$$ \begin{aligned} & (\lambda-1) x+(\lambda-4) y+\lambda z=5 \\ & \lambda x+(\lambda-1) y+(\lambda-4) z=7 \\ & (\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9 \end{aligned}$$

has infinitely many solutions, then $\lambda^2+\lambda$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
13

If $\mathrm{A}, \mathrm{B}, \operatorname{and}\left(\operatorname{adj}\left(\mathrm{A}^{-1}\right)+\operatorname{adj}\left(\mathrm{B}^{-1}\right)\right)$ are non-singular matrices of same order, then the inverse of $A\left(\operatorname{adj}\left(A^{-1}\right)+\operatorname{adj}\left(B^{-1}\right)\right)^{-1} B$, is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
14

If the system of linear equations :

$$\begin{aligned} & x+y+2 z=6 \\ & 2 x+3 y+\mathrm{az}=\mathrm{a}+1 \\ & -x-3 y+\mathrm{b} z=2 \mathrm{~b} \end{aligned}$$

where $a, b \in \mathbf{R}$, has infinitely many solutions, then $7 a+3 b$ is equal to :

JEE Main 2025 (Online) 22nd January Evening Shift
15

For a $3 \times 3$ matrix $M$, let trace $(M)$ denote the sum of all the diagonal elements of $M$. Let $A$ be a $3 \times 3$ matrix such that $|A|=\frac{1}{2}$ and trace $(A)=3$. If $B=\operatorname{adj}(\operatorname{adj}(2 A))$, then the value of $|B|+$ trace $(B)$ equals :

JEE Main 2025 (Online) 22nd January Evening Shift
16

Let $$B=\left[\begin{array}{ll}1 & 3 \\ 1 & 5\end{array}\right]$$ and $$A$$ be a $$2 \times 2$$ matrix such that $$A B^{-1}=A^{-1}$$. If $$B C B^{-1}=A$$ and $$C^4+\alpha C^2+\beta I=O$$, then $$2 \beta-\alpha$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
17

Let $$\lambda, \mu \in \mathbf{R}$$. If the system of equations

$$\begin{aligned} & 3 x+5 y+\lambda z=3 \\ & 7 x+11 y-9 z=2 \\ & 97 x+155 y-189 z=\mu \end{aligned}$$

has infinitely many solutions, then $$\mu+2 \lambda$$ is equal to :

JEE Main 2024 (Online) 9th April Morning Shift
18

If $$\alpha \neq \mathrm{a}, \beta \neq \mathrm{b}, \gamma \neq \mathrm{c}$$ and $$\left|\begin{array}{lll}\alpha & \mathrm{b} & \mathrm{c} \\ \mathrm{a} & \beta & \mathrm{c} \\ \mathrm{a} & \mathrm{b} & \gamma\end{array}\right|=0$$, then $$\frac{\mathrm{a}}{\alpha-\mathrm{a}}+\frac{\mathrm{b}}{\beta-\mathrm{b}}+\frac{\gamma}{\gamma-\mathrm{c}}$$ is equal to :

JEE Main 2024 (Online) 8th April Evening Shift
19

If the system of equations $$x+4 y-z=\lambda, 7 x+9 y+\mu z=-3,5 x+y+2 z=-1$$ has infinitely many solutions, then $$(2 \mu+3 \lambda)$$ is equal to :

JEE Main 2024 (Online) 8th April Evening Shift
20

Let $$A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$$. If $$A^3=4 A^2-A-21 I$$, where $$I$$ is the identity matrix of order $$3 \times 3$$, then $$2 a+3 b$$ is equal to

JEE Main 2024 (Online) 8th April Morning Shift
21

If $$A$$ is a square matrix of order 3 such that $$\operatorname{det}(A)=3$$ and $$\operatorname{det}\left(\operatorname{adj}\left(-4 \operatorname{adj}\left(-3 \operatorname{adj}\left(3 \operatorname{adj}\left((2 \mathrm{~A})^{-1}\right)\right)\right)\right)\right)=2^{\mathrm{m}} 3^{\mathrm{n}}$$, then $$\mathrm{m}+2 \mathrm{n}$$ is equal to :

JEE Main 2024 (Online) 6th April Evening Shift
22

For $$\alpha, \beta \in \mathbb{R}$$ and a natural number $$n$$, let $$A_r=\left|\begin{array}{ccc}r & 1 & \frac{n^2}{2}+\alpha \\ 2 r & 2 & n^2-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$$. Then $$2 A_{10}-A_8$$ is

JEE Main 2024 (Online) 6th April Morning Shift
23

The values of $$m, n$$, for which the system of equations

$$\begin{aligned} & x+y+z=4, \\ & 2 x+5 y+5 z=17, \\ & x+2 y+\mathrm{m} z=\mathrm{n} \end{aligned}$$

has infinitely many solutions, satisfy the equation :

JEE Main 2024 (Online) 5th April Evening Shift
24

Let $$\alpha \beta \neq 0$$ and $$A=\left[\begin{array}{rrr}\beta & \alpha & 3 \\ \alpha & \alpha & \beta \\ -\beta & \alpha & 2 \alpha\end{array}\right]$$. If $$B=\left[\begin{array}{rrr}3 \alpha & -9 & 3 \alpha \\ -\alpha & 7 & -2 \alpha \\ -2 \alpha & 5 & -2 \beta\end{array}\right]$$ is the matrix of cofactors of the elements of $$A$$, then $$\operatorname{det}(A B)$$ is equal to :

JEE Main 2024 (Online) 5th April Evening Shift
25

Let A and B be two square matrices of order 3 such that $$\mathrm{|A|=3}$$ and $$\mathrm{|B|=2}$$. Then $$|\mathrm{A}^{\mathrm{T}} \mathrm{A}(\operatorname{adj}(2 \mathrm{~A}))^{-1}(\operatorname{adj}(4 \mathrm{~B}))(\operatorname{adj}(\mathrm{AB}))^{-1} \mathrm{AA}^{\mathrm{T}}|$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
26

If the system of equations

$$\begin{array}{r} 11 x+y+\lambda z=-5 \\ 2 x+3 y+5 z=3 \\ 8 x-19 y-39 z=\mu \end{array}$$

has infinitely many solutions, then $$\lambda^4-\mu$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
27

Let $$A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$$ and $$B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$$. Then, the sum of all the elements of the matrix $$B$$ is:

JEE Main 2024 (Online) 4th April Evening Shift
28

Let $$\alpha \in(0, \infty)$$ and $$A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$$. If $$\operatorname{det}\left(\operatorname{adj}\left(2 A-A^T\right) \cdot \operatorname{adj}\left(A-2 A^T\right)\right)=2^8$$, then $$(\operatorname{det}(A))^2$$ is equal to:

JEE Main 2024 (Online) 4th April Morning Shift
29

If the system of equations

$$\begin{aligned} & x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0 \\ & x+(\cos \alpha) y+(\sin \alpha) z=0 \\ & x+(\sin \alpha) y-(\cos \alpha) z=0 \end{aligned}$$

has a non-trivial solution, then $$\alpha \in\left(0, \frac{\pi}{2}\right)$$ is equal to :

JEE Main 2024 (Online) 4th April Morning Shift
30
Let the system of equations $x+2 y+3 z=5,2 x+3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
31
If $\mathrm{A}=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -1 & \sqrt{2}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right], \mathrm{C}=\mathrm{ABA}^{\mathrm{T}}$ and $\mathrm{X}=\mathrm{A}^{\mathrm{T}} \mathrm{C}^2 \mathrm{~A}$, then $\operatorname{det} \mathrm{X}$ is equal to :
JEE Main 2024 (Online) 1st February Morning Shift
32
If the system of equations

$$ \begin{aligned} & 2 x+3 y-z=5 \\\\ & x+\alpha y+3 z=-4 \\\\ & 3 x-y+\beta z=7 \end{aligned} $$

has infinitely many solutions, then $13 \alpha \beta$ is equal to :
JEE Main 2024 (Online) 1st February Morning Shift
33

Let $$A$$ be a $$3 \times 3$$ real matrix such that

$$A\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right)=2\left(\begin{array}{l} 1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right)=4\left(\begin{array}{l} -1 \\ 0 \\ 1 \end{array}\right), A\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right)=2\left(\begin{array}{l} 0 \\ 1 \\ 0 \end{array}\right) \text {. }$$

Then, the system $$(A-3 I)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 2 \\ 3\end{array}\right)$$ has :

JEE Main 2024 (Online) 31st January Evening Shift
34

If the system of linear equations

$$\begin{aligned} & x-2 y+z=-4 \\ & 2 x+\alpha y+3 z=5 \\ & 3 x-y+\beta z=3 \end{aligned}$$

has infinitely many solutions, then $$12 \alpha+13 \beta$$ is equal to

JEE Main 2024 (Online) 31st January Morning Shift
35

Let $$R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$$ be a non-zero $$3 \times 3$$ matrix, where $$x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$$. For a square matrix $$M$$, let trace $$(M)$$ denote the sum of all the diagonal entries of $$M$$. Then, among the statements:

(I) Trace $$(R)=0$$

(II) If trace $$(\operatorname{adj}(\operatorname{adj}(R))=0$$, then $$R$$ has exactly one non-zero entry.

JEE Main 2024 (Online) 30th January Evening Shift
36

Consider the system of linear equations $$x+y+z=5, x+2 y+\lambda^2 z=9, x+3 y+\lambda z=\mu$$, where $$\lambda, \mu \in \mathbb{R}$$. Then, which of the following statement is NOT correct?

JEE Main 2024 (Online) 30th January Evening Shift
37

Consider the system of linear equations $$x+y+z=4 \mu, x+2 y+2 \lambda z=10 \mu, x+3 y+4 \lambda^2 z=\mu^2+15$$ where $$\lambda, \mu \in \mathbf{R}$$. Which one of the following statements is NOT correct ?

JEE Main 2024 (Online) 30th January Morning Shift
38

Let $$A=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$$ and $$P=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$$. The sum of the prime factors of $$\left|P^{-1} A P-2 I\right|$$ is equal to

JEE Main 2024 (Online) 29th January Evening Shift
39

$$\text { Let } A=\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha \end{array}\right] \text { and }|2 \mathrm{~A}|^3=2^{21} \text { where } \alpha, \beta \in Z \text {, Then a value of } \alpha \text { is }$$

JEE Main 2024 (Online) 29th January Morning Shift
40

Let $$\mathrm{A}$$ be a square matrix such that $$\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$$. Then $$\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
41

The values of $$\alpha$$, for which $$\left|\begin{array}{ccc}1 & \frac{3}{2} & \alpha+\frac{3}{2} \\ 1 & \frac{1}{3} & \alpha+\frac{1}{3} \\ 2 \alpha+3 & 3 \alpha+1 & 0\end{array}\right|=0$$, lie in the interval

JEE Main 2024 (Online) 27th January Evening Shift
42
Consider the matrix $f(x)=\left[\begin{array}{ccc}\cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1\end{array}\right]$.

Given below are two statements :

Statement I : $ f(-x)$ is the inverse of the matrix $f(x)$.

Statement II : $f(x) f(y)=f(x+y)$.

In the light of the above statements, choose the correct answer from the options given below :
JEE Main 2024 (Online) 27th January Morning Shift
43
Let the determinant of a square matrix A of order $m$ be $m-n$, where $m$ and $n$

satisfy $4 m+n=22$ and $17 m+4 n=93$.

If $\operatorname{det}(n \operatorname{adj}(\operatorname{adj}(m A)))=3^{a} 5^{b} 6^{c}$ then $a+b+c$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
44

Let for $$A = \left[ {\matrix{ 1 & 2 & 3 \cr \alpha & 3 & 1 \cr 1 & 1 & 2 \cr } } \right],|A| = 2$$. If $$\mathrm{|2\,adj\,(2\,adj\,(2A))| = {32^n}}$$, then $$3n + \alpha $$ is equal to

JEE Main 2023 (Online) 13th April Evening Shift
45

If the system of equations

$$2 x+y-z=5$$

$$2 x-5 y+\lambda z=\mu$$

$$x+2 y-5 z=7$$

has infinitely many solutions, then $$(\lambda+\mu)^{2}+(\lambda-\mu)^{2}$$ is equal to

JEE Main 2023 (Online) 13th April Evening Shift
46

For the system of linear equations

$$2 x+4 y+2 a z=b$$

$$x+2 y+3 z=4$$

$$2 x-5 y+2 z=8$$

which of the following is NOT correct?

JEE Main 2023 (Online) 13th April Morning Shift
47

Let $$B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2$$ be the adjoint of a matrix $$A$$ and $$|A|=2$$. Then $$\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :

JEE Main 2023 (Online) 13th April Morning Shift
48

The number of symmetric matrices of order 3, with all the entries from the set $$\{0,1,2,3,4,5,6,7,8,9\}$$ is :

JEE Main 2023 (Online) 13th April Morning Shift
49

Let $$A=\left[\begin{array}{cc}1 & \frac{1}{51} \\ 0 & 1\end{array}\right]$$. If $$\mathrm{B}=\left[\begin{array}{cc}1 & 2 \\ -1 & -1\end{array}\right] A\left[\begin{array}{cc}-1 & -2 \\ 1 & 1\end{array}\right]$$, then the sum of all the elements of the matrix $$\sum_\limits{n=1}^{50} B^{n}$$ is equal to

JEE Main 2023 (Online) 12th April Morning Shift
50

If the system of linear equations

$$ \begin{aligned} & 7 x+11 y+\alpha z=13 \\\\ & 5 x+4 y+7 z=\beta \\\\ & 175 x+194 y+57 z=361 \end{aligned} $$

has infinitely many solutions, then $$\alpha+\beta+2$$ is equal to :

JEE Main 2023 (Online) 11th April Evening Shift
51

$$\left|\begin{array}{ccc}x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^{2}\end{array}\right|=\frac{9}{8}(103 x+81)$$, then $$\lambda, \frac{\lambda}{3}$$ are the roots of the equation :

JEE Main 2023 (Online) 11th April Evening Shift
52

Let $$\mathrm{A}$$ be a $$2 \times 2$$ matrix with real entries such that $$\mathrm{A}'=\alpha \mathrm{A}+\mathrm{I}$$, where $$\alpha \in \mathbb{R}-\{-1,1\}$$. If $$\operatorname{det}\left(A^{2}-A\right)=4$$, then the sum of all possible values of $$\alpha$$ is equal to :

JEE Main 2023 (Online) 11th April Morning Shift
53

If $$\mathrm{A}=\frac{1}{5 ! 6 ! 7 !}\left[\begin{array}{ccc}5 ! & 6 ! & 7 ! \\ 6 ! & 7 ! & 8 ! \\ 7 ! & 8 ! & 9 !\end{array}\right]$$, then $$|\operatorname{adj}(\operatorname{adj}(2 \mathrm{~A}))|$$ is equal to :

JEE Main 2023 (Online) 10th April Evening Shift
54

If A is a 3 $$\times$$ 3 matrix and $$|A| = 2$$, then $$|3\,adj\,(|3A|{A^2})|$$ is equal to :

JEE Main 2023 (Online) 10th April Morning Shift
55

For the system of linear equations

$$2x - y + 3z = 5$$

$$3x + 2y - z = 7$$

$$4x + 5y + \alpha z = \beta $$,

which of the following is NOT correct?

JEE Main 2023 (Online) 10th April Morning Shift
56

If $$A=\left[\begin{array}{cc}1 & 5 \\ \lambda & 10\end{array}\right], \mathrm{A}^{-1}=\alpha \mathrm{A}+\beta \mathrm{I}$$ and $$\alpha+\beta=-2$$, then $$4 \alpha^{2}+\beta^{2}+\lambda^{2}$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
57

Let S be the set of all values of $$\theta \in[-\pi, \pi]$$ for which the system of linear equations

$$x+y+\sqrt{3} z=0$$

$$-x+(\tan \theta) y+\sqrt{7} z=0$$

$$x+y+(\tan \theta) z=0$$

has non-trivial solution. Then $$\frac{120}{\pi} \sum_\limits{\theta \in \mathrm{s}} \theta$$ is equal to :

JEE Main 2023 (Online) 8th April Evening Shift
58

Let $$A=\left[\begin{array}{ccc}2 & 1 & 0 \\ 1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$$. If $$|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} 2 A))|=(16)^{n}$$, then $$n$$ is equal to :

JEE Main 2023 (Online) 8th April Morning Shift
59

Let $$P=\left[\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2}\end{array}\right], A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$$ and $$Q=P A P^{T}$$. If $$P^{T} Q^{2007} P=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$$, then $$2 a+b-3 c-4 d$$ equal to :

JEE Main 2023 (Online) 8th April Morning Shift
60

Let $$P$$ be a square matrix such that $$P^{2}=I-P$$. For $$\alpha, \beta, \gamma, \delta \in \mathbb{N}$$, if $$P^{\alpha}+P^{\beta}=\gamma I-29 P$$ and $$P^{\alpha}-P^{\beta}=\delta I-13 P$$, then $$\alpha+\beta+\gamma-\delta$$ is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
61

For the system of equations

$$x+y+z=6$$

$$x+2 y+\alpha z=10$$

$$x+3 y+5 z=\beta$$, which one of the following is NOT true?

JEE Main 2023 (Online) 6th April Evening Shift
62

If the system of equations

$$x+y+a z=b$$

$$2 x+5 y+2 z=6$$

$$x+2 y+3 z=3$$

has infinitely many solutions, then $$2 a+3 b$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
63

Let $$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{2 \times 2}$$, where $$\mathrm{a}_{\mathrm{ij}} \neq 0$$ for all $$\mathrm{i}, \mathrm{j}$$ and $$\mathrm{A}^{2}=\mathrm{I}$$. Let a be the sum of all diagonal elements of $$\mathrm{A}$$ and $$\mathrm{b}=|\mathrm{A}|$$. Then $$3 a^{2}+4 b^{2}$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
64

For the system of linear equations $$\alpha x+y+z=1,x+\alpha y+z=1,x+y+\alpha z=\beta$$, which one of the following statements is NOT correct?

JEE Main 2023 (Online) 1st February Evening Shift
65

If $$A = {1 \over 2}\left[ {\matrix{ 1 & {\sqrt 3 } \cr { - \sqrt 3 } & 1 \cr } } \right]$$, then :

JEE Main 2023 (Online) 1st February Evening Shift
66

Let $$S$$ denote the set of all real values of $$\lambda$$ such that the system of equations

$$\lambda x+y+z=1$$

$$x+\lambda y+z=1$$

$$x+y+\lambda z=1$$

is inconsistent, then $$\sum_\limits{\lambda \in S}\left(|\lambda|^{2}+|\lambda|\right)$$ is equal to

JEE Main 2023 (Online) 1st February Morning Shift
67

For the system of linear equations

$$x+y+z=6$$

$$\alpha x+\beta y+7 z=3$$

$$x+2 y+3 z=14$$

which of the following is NOT true ?

JEE Main 2023 (Online) 31st January Morning Shift
68

Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 4 & { - 1} \cr 0 & {12} & { - 3} \cr } } \right)$$. Then the sum of the diagonal elements of the matrix $${(A + I)^{11}}$$ is equal to :

JEE Main 2023 (Online) 31st January Morning Shift
69
For $\alpha, \beta \in \mathbb{R}$, suppose the system of linear equations

$$ \begin{aligned} & x-y+z=5 \\ & 2 x+2 y+\alpha z=8 \\ & 3 x-y+4 z=\beta \end{aligned} $$

has infinitely many solutions. Then $\alpha$ and $\beta$ are the roots of :
JEE Main 2023 (Online) 30th January Evening Shift
70
If $P$ is a $3 \times 3$ real matrix such that $P^T=a P+(a-1) I$, where $a>1$, then :
JEE Main 2023 (Online) 30th January Evening Shift
71

Let the system of linear equations

$$x+y+kz=2$$

$$2x+3y-z=1$$

$$3x+4y+2z=k$$

have infinitely many solutions. Then the system

$$(k+1)x+(2k-1)y=7$$

$$(2k+1)x+(k+5)y=10$$

has :

JEE Main 2023 (Online) 30th January Morning Shift
72

Let $$A=\left(\begin{array}{cc}\mathrm{m} & \mathrm{n} \\ \mathrm{p} & \mathrm{q}\end{array}\right), \mathrm{d}=|\mathrm{A}| \neq 0$$ and $$\mathrm{|A-d(A d j A)|=0}$$. Then

JEE Main 2023 (Online) 30th January Morning Shift
73

The set of all values of $$\mathrm{t\in \mathbb{R}}$$, for which the matrix

$$\left[ {\matrix{ {{e^t}} & {{e^{ - t}}(\sin t - 2\cos t)} & {{e^{ - t}}( - 2\sin t - \cos t)} \cr {{e^t}} & {{e^{ - t}}(2\sin t + \cos t)} & {{e^{ - t}}(\sin t - 2\cos t)} \cr {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr } } \right]$$ is invertible, is :

JEE Main 2023 (Online) 29th January Evening Shift
74

Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then

JEE Main 2023 (Online) 29th January Morning Shift
75

Consider the following system of equations

$$\alpha x+2y+z=1$$

$$2\alpha x+3y+z=1$$

$$3x+\alpha y+2z=\beta$$

for some $$\alpha,\beta\in \mathbb{R}$$. Then which of the following is NOT correct.

JEE Main 2023 (Online) 29th January Morning Shift
76

Let A, B, C be 3 $$\times$$ 3 matrices such that A is symmetric and B and C are skew-symmetric. Consider the statements

(S1) A$$^{13}$$ B$$^{26}$$ $$-$$ B$$^{26}$$ A$$^{13}$$ is symmetric

(S2) A$$^{26}$$ C$$^{13}$$ $$-$$ C$$^{13}$$ A$$^{26}$$ is symmetric

Then,

JEE Main 2023 (Online) 25th January Evening Shift
77

Let $$A = \left[ {\matrix{ {{1 \over {\sqrt {10} }}} & {{3 \over {\sqrt {10} }}} \cr {{{ - 3} \over {\sqrt {10} }}} & {{1 \over {\sqrt {10} }}} \cr } } \right]$$ and $$B = \left[ {\matrix{ 1 & { - i} \cr 0 & 1 \cr } } \right]$$, where $$i = \sqrt { - 1} $$. If $$\mathrm{M=A^T B A}$$, then the inverse of the matrix $$\mathrm{AM^{2023}A^T}$$ is

JEE Main 2023 (Online) 25th January Evening Shift
78

Let $$x,y,z > 1$$ and $$A = \left[ {\matrix{ 1 & {{{\log }_x}y} & {{{\log }_x}z} \cr {{{\log }_y}x} & 2 & {{{\log }_y}z} \cr {{{\log }_z}x} & {{{\log }_z}y} & 3 \cr } } \right]$$. Then $$\mathrm{|adj~(adj~A^2)|}$$ is equal to

JEE Main 2023 (Online) 25th January Morning Shift
79

Let S$$_1$$ and S$$_2$$ be respectively the sets of all $$a \in \mathbb{R} - \{ 0\} $$ for which the system of linear equations

$$ax + 2ay - 3az = 1$$

$$(2a + 1)x + (2a + 3)y + (a + 1)z = 2$$

$$(3a + 5)x + (a + 5)y + (a + 2)z = 3$$

has unique solution and infinitely many solutions. Then

JEE Main 2023 (Online) 25th January Morning Shift
80

Let A be a 3 $$\times$$ 3 matrix such that $$\mathrm{|adj(adj(adj~A))|=12^4}$$. Then $$\mathrm{|A^{-1}~adj~A|}$$ is equal to

JEE Main 2023 (Online) 24th January Evening Shift
81

If the system of equations

$$x+2y+3z=3$$

$$4x+3y-4z=4$$

$$8x+4y-\lambda z=9+\mu$$

has infinitely many solutions, then the ordered pair ($$\lambda,\mu$$) is equal to :

JEE Main 2023 (Online) 24th January Evening Shift
82

If A and B are two non-zero n $$\times$$ n matrices such that $$\mathrm{A^2+B=A^2B}$$, then :

JEE Main 2023 (Online) 24th January Morning Shift
83

Let $$\alpha$$ be a root of the equation $$(a - c){x^2} + (b - a)x + (c - b) = 0$$ where a, b, c are distinct real numbers such that the matrix $$\left[ {\matrix{ {{\alpha ^2}} & \alpha & 1 \cr 1 & 1 & 1 \cr a & b & c \cr } } \right]$$ is singular. Then, the value of $${{{{(a - c)}^2}} \over {(b - a)(c - b)}} + {{{{(b - a)}^2}} \over {(a - c)(c - b)}} + {{{{(c - b)}^2}} \over {(a - c)(b - a)}}$$ is

JEE Main 2023 (Online) 24th January Morning Shift
84

Which of the following matrices can NOT be obtained from the matrix $$\left[\begin{array}{cc}-1 & 2 \\ 1 & -1\end{array}\right]$$ by a single elementary row operation ?

JEE Main 2022 (Online) 29th July Evening Shift
85

If the system of equations

$$ \begin{aligned} &x+y+z=6 \\ &2 x+5 y+\alpha z=\beta \\ &x+2 y+3 z=14 \end{aligned} $$

has infinitely many solutions, then $$\alpha+\beta$$ is equal to

JEE Main 2022 (Online) 29th July Evening Shift
86

Let A and B be two $$3 \times 3$$ non-zero real matrices such that AB is a zero matrix. Then

JEE Main 2022 (Online) 29th July Morning Shift
87

Let $$\mathrm{A}$$ and $$\mathrm{B}$$ be any two $$3 \times 3$$ symmetric and skew symmetric matrices respectively. Then which of the following is NOT true?

JEE Main 2022 (Online) 28th July Evening Shift
88

Let the matrix $$A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$$ and the matrix $$B_{0}=A^{49}+2 A^{98}$$. If $$B_{n}=A d j\left(B_{n-1}\right)$$ for all $$n \geq 1$$, then $$\operatorname{det}\left(B_{4}\right)$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
89

Let $$A=\left(\begin{array}{rr}4 & -2 \\ \alpha & \beta\end{array}\right)$$.

If $$\mathrm{A}^{2}+\gamma \mathrm{A}+18 \mathrm{I}=\mathrm{O}$$, then $$\operatorname{det}(\mathrm{A})$$ is equal to _____________.

JEE Main 2022 (Online) 27th July Evening Shift
90

Let $$A=\left(\begin{array}{cc}1 & 2 \\ -2 & -5\end{array}\right)$$. Let $$\alpha, \beta \in \mathbb{R}$$ be such that $$\alpha A^{2}+\beta A=2 I$$. Then $$\alpha+\beta$$ is equal to

JEE Main 2022 (Online) 27th July Morning Shift
91

$$ \text { Let } A=\left[\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right] \text { and } B=\left[\begin{array}{ccc} 9^{2} & -10^{2} & 11^{2} \\ 12^{2} & 13^{2} & -14^{2} \\ -15^{2} & 16^{2} & 17^{2} \end{array}\right] \text {, then the value of } A^{\prime} B A \text { is: } $$

JEE Main 2022 (Online) 26th July Evening Shift
92

If the system of linear equations.

$$8x + y + 4z = - 2$$

$$x + y + z = 0$$

$$\lambda x - 3y = \mu $$

has infinitely many solutions, then the distance of the point $$\left( {\lambda ,\mu , - {1 \over 2}} \right)$$ from the plane $$8x + y + 4z + 2 = 0$$ is :

JEE Main 2022 (Online) 26th July Morning Shift
93

Let A be a 2 $$\times$$ 2 matrix with det (A) = $$-$$ 1 and det ((A + I) (Adj (A) + I)) = 4. Then the sum of the diagonal elements of A can be :

JEE Main 2022 (Online) 26th July Morning Shift
94

The number of real values of $$\lambda$$, such that the system of linear equations

2x $$-$$ 3y + 5z = 9

x + 3y $$-$$ z = $$-$$18

3x $$-$$ y + ($$\lambda$$2 $$-$$ | $$\lambda$$ |)z = 16

has no solutions, is

JEE Main 2022 (Online) 25th July Evening Shift
95

The number of $$\theta \in(0,4 \pi)$$ for which the system of linear equations

$$ \begin{aligned} &3(\sin 3 \theta) x-y+z=2 \\\\ &3(\cos 2 \theta) x+4 y+3 z=3 \\\\ &6 x+7 y+7 z=9 \end{aligned} $$

has no solution, is :

JEE Main 2022 (Online) 25th July Morning Shift
96

Let $$A = \left[ {\matrix{ 1 & { - 2} & \alpha \cr \alpha & 2 & { - 1} \cr } } \right]$$ and $$B = \left[ {\matrix{ 2 & \alpha \cr { - 1} & 2 \cr 4 & { - 5} \cr } } \right],\,\alpha \in C$$. Then the absolute value of the sum of all values of $$\alpha$$ for which det(AB) = 0 is :

JEE Main 2022 (Online) 30th June Morning Shift
97

Let A and B be two square matrices of order 2. If $$det\,(A) = 2$$, $$det\,(B) = 3$$ and $$\det \left( {(\det \,5(det\,A)B){A^2}} \right) = {2^a}{3^b}{5^c}$$ for some a, b, c, $$\in$$ N, then a + b + c is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
98

Let $$A = \left( {\matrix{ 2 & { - 1} \cr 0 & 2 \cr } } \right)$$. If $$B = I - {}^5{C_1}(adj\,A) + {}^5{C_2}{(adj\,A)^2} - \,\,.....\,\, - {}^5{C_5}{(adj\,A)^5}$$, then the sum of all elements of the matrix B is

JEE Main 2022 (Online) 29th June Evening Shift
99

If the system of linear equations

2x + y $$-$$ z = 7

x $$-$$ 3y + 2z = 1

x + 4y + $$\delta$$z = k, where $$\delta$$, k $$\in$$ R has infinitely many solutions, then $$\delta$$ + k is equal to:

JEE Main 2022 (Online) 29th June Morning Shift
100

Let $$A = [{a_{ij}}]$$ be a square matrix of order 3 such that $${a_{ij}} = {2^{j - i}}$$, for all i, j = 1, 2, 3. Then, the matrix A2 + A3 + ...... + A10 is equal to :

JEE Main 2022 (Online) 29th June Morning Shift
101

If the system of linear equations

$$2x + 3y - z = - 2$$

$$x + y + z = 4$$

$$x - y + |\lambda |z = 4\lambda - 4$$

where, $$\lambda$$ $$\in$$ R, has no solution, then

JEE Main 2022 (Online) 28th June Morning Shift
102

Let A be a matrix of order 3 $$\times$$ 3 and det (A) = 2. Then det (det (A) adj (5 adj (A3))) is equal to _____________.

JEE Main 2022 (Online) 28th June Morning Shift
103

Let $$f(x) = \left| {\matrix{ a & { - 1} & 0 \cr {ax} & a & { - 1} \cr {a{x^2}} & {ax} & a \cr } } \right|,\,a \in R$$. Then the sum of the squares of all the values of a, for which $$2f'(10) - f'(5) + 100 = 0$$, is

JEE Main 2022 (Online) 27th June Evening Shift
104

Let A and B be two 3 $$\times$$ 3 matrices such that $$AB = I$$ and $$|A| = {1 \over 8}$$. Then $$|adj\,(B\,adj(2A))|$$ is equal to

JEE Main 2022 (Online) 27th June Evening Shift
105

Let the system of linear equations
$$x + 2y + z = 2$$,
$$\alpha x + 3y - z = \alpha $$,
$$ - \alpha x + y + 2z = - \alpha $$
be inconsistent. Then $$\alpha$$ is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
106

If the system of equations

$$\alpha$$x + y + z = 5, x + 2y + 3z = 4, x + 3y + 5z = $$\beta$$

has infinitely many solutions, then the ordered pair ($$\alpha$$, $$\beta$$) is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
107

Let A be a 3 $$\times$$ 3 invertible matrix. If |adj (24A)| = |adj (3 adj (2A))|, then |A|2 is equal to :

JEE Main 2022 (Online) 26th June Morning Shift
108

The ordered pair (a, b), for which the system of linear equations

3x $$-$$ 2y + z = b

5x $$-$$ 8y + 9z = 3

2x + y + az = $$-$$1

has no solution, is :

JEE Main 2022 (Online) 26th June Morning Shift
109

The system of equations

$$ - kx + 3y - 14z = 25$$

$$ - 15x + 4y - kz = 3$$

$$ - 4x + y + 3z = 4$$

is consistent for all k in the set

JEE Main 2022 (Online) 25th June Evening Shift
110

Let A be a 3 $$\times$$ 3 real matrix such that

$$A\left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 0 \cr } } \right);A\left( {\matrix{ 1 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ { - 1} \cr 0 \cr 1 \cr } } \right)$$ and $$A\left( {\matrix{ 0 \cr 0 \cr 1 \cr } } \right) = \left( {\matrix{ 1 \cr 1 \cr 2 \cr } } \right)$$.

If $$X = {({x_1},{x_2},{x_3})^T}$$ and I is an identity matrix of order 3, then the system $$(A - 2I)X = \left( {\matrix{ 4 \cr 1 \cr 1 \cr } } \right)$$ has :

JEE Main 2022 (Online) 25th June Morning Shift
111

Let $$A = \left[ {\matrix{ 0 & { - 2} \cr 2 & 0 \cr } } \right]$$. If M and N are two matrices given by $$M = \sum\limits_{k = 1}^{10} {{A^{2k}}} $$ and $$N = \sum\limits_{k = 1}^{10} {{A^{2k - 1}}} $$ then MN2 is :

JEE Main 2022 (Online) 25th June Morning Shift
112

Let the system of linear equations

x + y + $$\alpha$$z = 2

3x + y + z = 4

x + 2z = 1

have a unique solution (x$$^ * $$, y$$^ * $$, z$$^ * $$). If ($$\alpha$$, x$$^ * $$), (y$$^ * $$, $$\alpha$$) and (x$$^ * $$, $$-$$y$$^ * $$) are collinear points, then the sum of absolute values of all possible values of $$\alpha$$ is

JEE Main 2022 (Online) 24th June Evening Shift
113

The number of values of $$\alpha$$ for which the system of equations :

x + y + z = $$\alpha$$

$$\alpha$$x + 2$$\alpha$$y + 3z = $$-$$1

x + 3$$\alpha$$y + 5z = 4

is inconsistent, is

JEE Main 2022 (Online) 24th June Morning Shift
114

Let S = {$$\sqrt{n}$$ : 1 $$\le$$ n $$\le$$ 50 and n is odd}.

Let a $$\in$$ S and $$A = \left[ {\matrix{ 1 & 0 & a \cr { - 1} & 1 & 0 \cr { - a} & 0 & 1 \cr } } \right]$$.

If $$\sum\limits_{a\, \in \,S}^{} {\det (adj\,A) = 100\lambda } $$, then $$\lambda$$ is equal to :

JEE Main 2022 (Online) 24th June Morning Shift
115
Consider the system of linear equations

$$-$$x + y + 2z = 0

3x $$-$$ ay + 5z = 1

2x $$-$$ 2y $$-$$ az = 7

Let S1 be the set of all a$$\in$$R for which the system is inconsistent and S2 be the set of all a$$\in$$R for which the system has infinitely many solutions. If n(S1) and n(S2) denote the number of elements in S1 and S2 respectively, then
JEE Main 2021 (Online) 1st September Evening Shift
116
If $$\alpha$$ + $$\beta$$ + $$\gamma$$ = 2$$\pi$$, then the system of equations

x + (cos $$\gamma$$)y + (cos $$\beta$$)z = 0

(cos $$\gamma$$)x + y + (cos $$\alpha$$)z = 0

(cos $$\beta$$)x + (cos $$\alpha$$)y + z = 0

has :
JEE Main 2021 (Online) 31st August Evening Shift
117
If the following system of linear equations

2x + y + z = 5

x $$-$$ y + z = 3

x + y + az = b

has no solution, then :
JEE Main 2021 (Online) 31st August Morning Shift
118
If $${a_r} = \cos {{2r\pi } \over 9} + i\sin {{2r\pi } \over 9}$$, r = 1, 2, 3, ....., i = $$\sqrt { - 1} $$, then
the determinant $$\left| {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{a_4}} & {{a_5}} & {{a_6}} \cr {{a_7}} & {{a_8}} & {{a_9}} \cr } } \right|$$ is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
119
Let $$A = \left( {\matrix{ {[x + 1]} & {[x + 2]} & {[x + 3]} \cr {[x]} & {[x + 3]} & {[x + 3]} \cr {[x]} & {[x + 2]} & {[x + 4]} \cr } } \right)$$, where [t] denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval :
JEE Main 2021 (Online) 27th August Evening Shift
120
Let A(a, 0), B(b, 2b + 1) and C(0, b), b $$\ne$$ 0, |b| $$\ne$$ 1, be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is :
JEE Main 2021 (Online) 27th August Evening Shift
121
Let [$$\lambda$$] be the greatest integer less than or equal to $$\lambda$$. The set of all values of $$\lambda$$ for which the system of linear equations
x + y + z = 4,
3x + 2y + 5z = 3,
9x + 4y + (28 + [$$\lambda$$])z = [$$\lambda$$] has a solution is :
JEE Main 2021 (Online) 27th August Evening Shift
122
If the matrix $$A = \left( {\matrix{ 0 & 2 \cr K & { - 1} \cr } } \right)$$ satisfies $$A({A^3} + 3I) = 2I$$, then the value of K is :
JEE Main 2021 (Online) 27th August Morning Shift
123
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 1 \cr 1 & 0 & 0 \cr } } \right)$$. Then A2025 $$-$$ A2020 is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
124
Let $$\theta \in \left( {0,{\pi \over 2}} \right)$$. If the system of linear equations

$$(1 + {\cos ^2}\theta )x + {\sin ^2}\theta y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + (1 + {\sin ^2}\theta )y + 4\sin 3\,\theta z = 0$$

$${\cos ^2}\theta x + {\sin ^2}\theta y + (1 + 4\sin 3\,\theta )z = 0$$

has a non-trivial solution, then the value of $$\theta$$ is :
JEE Main 2021 (Online) 26th August Morning Shift
125
If $$A = \left( {\matrix{ {{1 \over {\sqrt 5 }}} & {{2 \over {\sqrt 5 }}} \cr {{{ - 2} \over {\sqrt 5 }}} & {{1 \over {\sqrt 5 }}} \cr } } \right)$$, $$B = \left( {\matrix{ 1 & 0 \cr i & 1 \cr } } \right)$$, $$i = \sqrt { - 1} $$, and Q = ATBA, then the inverse of the matrix A Q2021 AT is equal to :
JEE Main 2021 (Online) 26th August Morning Shift
126
Let A and B be two 3 $$\times$$ 3 real matrices such that (A2 $$-$$ B2) is invertible matrix. If A5 = B5 and A3B2 = A2B3, then the value of the determinant of the matrix A3 + B3 is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
127
Let $$A = \left[ {\matrix{ 1 & 2 \cr { - 1} & 4 \cr } } \right]$$. If A$$-$$1 = $$\alpha$$I + $$\beta$$A, $$\alpha$$, $$\beta$$ $$\in$$ R, I is a 2 $$\times$$ 2 identity matrix then 4($$\alpha$$ $$-$$ $$\beta$$) is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
128
The number of distinct real roots

of $$\left| {\matrix{ {\sin x} & {\cos x} & {\cos x} \cr {\cos x} & {\sin x} & {\cos x} \cr {\cos x} & {\cos x} & {\sin x} \cr } } \right| = 0$$ in the interval $$ - {\pi \over 4} \le x \le {\pi \over 4}$$ is :
JEE Main 2021 (Online) 25th July Evening Shift
129
If $$P = \left[ {\matrix{ 1 & 0 \cr {{1 \over 2}} & 1 \cr } } \right]$$, then P50 is :
JEE Main 2021 (Online) 25th July Evening Shift
130
The values of a and b, for which the system of equations

2x + 3y + 6z = 8

x + 2y + az = 5

3x + 5y + 9z = b

has no solution, are :
JEE Main 2021 (Online) 25th July Morning Shift
131
The values of $$\lambda$$ and $$\mu$$ such that the system of equations $$x + y + z = 6$$, $$3x + 5y + 5z = 26$$, $$x + 2y + \lambda z = \mu $$ has no solution, are :
JEE Main 2021 (Online) 22th July Evening Shift
132
Let A = [aij] be a real matrix of order 3 $$\times$$ 3, such that ai1 + ai2 + ai3 = 1, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A3 is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
133
The value of k $$\in$$R, for which the following system of linear equations

3x $$-$$ y + 4z = 3,

x + 2y $$-$$ 3z = $$-$$2

6x + 5y + kz = $$-$$3,

has infinitely many solutions, is :
JEE Main 2021 (Online) 20th July Evening Shift
134
Let $$A = \left[ {\matrix{ 2 & 3 \cr a & 0 \cr } } \right]$$, a$$\in$$R be written as P + Q where P is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to :
JEE Main 2021 (Online) 20th July Morning Shift
135
Let the system of linear equations

4x + $$\lambda$$y + 2z = 0

2x $$-$$ y + z = 0

$$\mu$$x + 2y + 3z = 0, $$\lambda$$, $$\mu$$$$\in$$R.

has a non-trivial solution. Then which of the following is true?
JEE Main 2021 (Online) 18th March Evening Shift
136
The solutions of the equation $$\left| {\matrix{ {1 + {{\sin }^2}x} & {{{\sin }^2}x} & {{{\sin }^2}x} \cr {{{\cos }^2}x} & {1 + {{\cos }^2}x} & {{{\cos }^2}x} \cr {4\sin 2x} & {4\sin 2x} & {1 + 4\sin 2x} \cr } } \right| = 0,(0 < x < \pi )$$, are
JEE Main 2021 (Online) 18th March Morning Shift
137
Let $$\alpha$$, $$\beta$$, $$\gamma$$ be the real roots of the equation, x3 + ax2 + bx + c = 0, (a, b, c $$\in$$ R and a, b $$\ne$$ 0). If the system of equations (in u, v, w) given by $$\alpha$$u + $$\beta$$v + $$\gamma$$w = 0, $$\beta$$u + $$\gamma$$v + $$\alpha$$w = 0; $$\gamma$$u + $$\alpha$$v + $$\beta$$w = 0 has non-trivial solution, then the value of $${{{a^2}} \over b}$$ is
JEE Main 2021 (Online) 18th March Morning Shift
138
Let $$A + 2B = \left[ {\matrix{ 1 & 2 & 0 \cr 6 & { - 3} & 3 \cr { - 5} & 3 & 1 \cr } } \right]$$ and $$2A - B = \left[ {\matrix{ 2 & { - 1} & 5 \cr 2 & { - 1} & 6 \cr 0 & 1 & 2 \cr } } \right]$$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) $$-$$ Tr(B) has value equal to
JEE Main 2021 (Online) 18th March Morning Shift
139
If x, y, z are in arithmetic progression with common difference d, x $$\ne$$ 3d, and the determinant of the matrix $$\left[ {\matrix{ 3 & {4\sqrt 2 } & x \cr 4 & {5\sqrt 2 } & y \cr 5 & k & z \cr } } \right]$$ is zero, then the value of k2 is :
JEE Main 2021 (Online) 17th March Evening Shift
140
The system of equations kx + y + z = 1, x + ky + z = k and x + y + zk = k2 has no solution if k is equal to :
JEE Main 2021 (Online) 17th March Morning Shift
141
If $$A = \left( {\matrix{ 0 & {\sin \alpha } \cr {\sin \alpha } & 0 \cr } } \right)$$ and $$\det \left( {{A^2} - {1 \over 2}I} \right) = 0$$, then a possible value of $$\alpha$$ is :
JEE Main 2021 (Online) 17th March Morning Shift
142
Let $$A = \left[ {\matrix{ i & { - i} \cr { - i} & i \cr } } \right],i = \sqrt { - 1} $$. Then, the system of linear equations $${A^8}\left[ {\matrix{ x \cr y \cr } } \right] = \left[ {\matrix{ 8 \cr {64} \cr } } \right]$$ has :
JEE Main 2021 (Online) 16th March Morning Shift
143
Consider the following system of equations :

x + 2y $$-$$ 3z = a

2x + 6y $$-$$ 11z = b

x $$-$$ 2y + 7z = c,

where a, b and c are real constants. Then the system of equations :
JEE Main 2021 (Online) 26th February Evening Shift
144
Let A be a symmetric matrix of order 2 with integer entries. If the sum of the diagonal elements of A2 is 1, then the possible number of such matrices is :
JEE Main 2021 (Online) 26th February Morning Shift
145
The value of $$\left| {\matrix{ {(a + 1)(a + 2)} & {a + 2} & 1 \cr {(a + 2)(a + 3)} & {a + 3} & 1 \cr {(a + 3)(a + 4)} & {a + 4} & 1 \cr } } \right|$$ is :
JEE Main 2021 (Online) 26th February Morning Shift
146
Let A be a 3 $$\times$$ 3 matrix with det(A) = 4. Let Ri denote the ith row of A. If a matrix B is obtained by performing the operation R2 $$ \to $$ 2R2 + 5R3 on 2A, then det(B) is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
147
If for the matrix, $$A = \left[ {\matrix{ 1 & { - \alpha } \cr \alpha & \beta \cr } } \right]$$, $$A{A^T} = {I_2}$$, then the value of $${\alpha ^4} + {\beta ^4}$$ is :
JEE Main 2021 (Online) 25th February Evening Shift
148
The following system of linear equations

2x + 3y + 2z = 9

3x + 2y + 2z = 9

x $$-$$ y + 4z = 8
JEE Main 2021 (Online) 25th February Evening Shift
149
Let A and B be 3 $$\times$$ 3 real matrices such that A is symmetric matrix and B is skew-symmetric matrix. Then the system of linear equations (A2B2 $$-$$ B2A2) X = O, where X is a 3 $$\times$$ 1 column matrix of unknown variables and O is a 3 $$\times$$ 1 null matrix, has :
JEE Main 2021 (Online) 24th February Evening Shift
150
For the system of linear equations:

$$x - 2y = 1,x - y + kz = - 2,ky + 4z = 6,k \in R$$,

consider the following statements :

(A) The system has unique solution if $$k \ne 2,k \ne - 2$$.

(B) The system has unique solution if k = $$-$$2

(C) The system has unique solution if k = 2

(D) The system has no solution if k = 2

(E) The system has infinite number of solutions if k $$ \ne $$ $$-$$2.

Which of the following statements are correct?
JEE Main 2021 (Online) 24th February Evening Shift
151
The system of linear equations
3x - 2y - kz = 10
2x - 4y - 2z = 6
x+2y - z = 5m
is inconsistent if :
JEE Main 2021 (Online) 24th February Morning Shift
152
Let $$\theta = {\pi \over 5}$$ and $$A = \left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$$.

If B = A + A4 , then det (B) :
JEE Main 2020 (Online) 6th September Evening Slot
153
Let m and M be respectively the minimum and maximum values of

$$\left| {\matrix{ {{{\cos }^2}x} & {1 + {{\sin }^2}x} & {\sin 2x} \cr {1 + {{\cos }^2}x} & {{{\sin }^2}x} & {\sin 2x} \cr {{{\cos }^2}x} & {{{\sin }^2}x} & {1 + \sin 2x} \cr } } \right|$$

Then the ordered pair (m, M) is equal to :
JEE Main 2020 (Online) 6th September Morning Slot
154
The values of $$\lambda $$ and $$\mu $$ for which the system of linear equations
x + y + z = 2
x + 2y + 3z = 5
x + 3y + $$\lambda $$z = $$\mu $$
has infinitely many solutions are, respectively:
JEE Main 2020 (Online) 6th September Morning Slot
155
If a + x = b + y = c + z + 1, where a, b, c, x, y, z
are non-zero distinct real numbers, then
$$\left| {\matrix{ x & {a + y} & {x + a} \cr y & {b + y} & {y + b} \cr z & {c + y} & {z + c} \cr } } \right|$$ is equal to :
JEE Main 2020 (Online) 5th September Evening Slot
156
If the system of linear equations
x + y + 3z = 0
x + 3y + k2z = 0
3x + y + 3z = 0
has a non-zero solution (x, y, z) for some k $$ \in $$ R, then x + $$\left( {{y \over z}} \right)$$ is equal to :
JEE Main 2020 (Online) 5th September Evening Slot
157
If the minimum and the maximum values of the function $$f:\left[ {{\pi \over 4},{\pi \over 2}} \right] \to R$$, defined by
$$f\left( \theta \right) = \left| {\matrix{ { - {{\sin }^2}\theta } & { - 1 - {{\sin }^2}\theta } & 1 \cr { - {{\cos }^2}\theta } & { - 1 - {{\cos }^2}\theta } & 1 \cr {12} & {10} & { - 2} \cr } } \right|$$ are m and M respectively, then the ordered pair (m,M) is equal to :
JEE Main 2020 (Online) 5th September Morning Slot
158
Let $$\lambda \in $$ R . The system of linear equations
2x1 - 4x2 + $$\lambda $$x3 = 1
x1 - 6x2 + x3 = 2
$$\lambda $$x1 - 10x2 + 4x3 = 3
is inconsistent for:
JEE Main 2020 (Online) 5th September Morning Slot
159
Suppose the vectors x1, x2 and x3 are the
solutions of the system of linear equations,
Ax = b when the vector b on the right side is equal to b1, b2 and b3 respectively. if

$${x_1} = \left[ {\matrix{ 1 \cr 1 \cr 1 \cr } } \right]$$, $${x_2} = \left[ {\matrix{ 0 \cr 2 \cr 1 \cr } } \right]$$, $${x_3} = \left[ {\matrix{ 0 \cr 0 \cr 1 \cr } } \right]$$

$${b_1} = \left[ {\matrix{ 1 \cr 0 \cr 0 \cr } } \right]$$, $${b_2} = \left[ {\matrix{ 0 \cr 2 \cr 0 \cr } } \right]$$ and $${b_3} = \left[ {\matrix{ 0 \cr 0 \cr 2 \cr } } \right]$$,
then the determinant of A is equal to :
JEE Main 2020 (Online) 4th September Evening Slot
160
If the system of equations
x+y+z=2
2x+4y–z=6
3x+2y+$$\lambda $$z=$$\mu $$
has infinitely many solutions, then
JEE Main 2020 (Online) 4th September Evening Slot
161
If $$A = \left[ {\matrix{ {\cos \theta } & {i\sin \theta } \cr {i\sin \theta } & {\cos \theta } \cr } } \right]$$, $$\left( {\theta = {\pi \over {24}}} \right)$$

and $${A^5} = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$, where $$i = \sqrt { - 1} $$ then which one of the following is not true?
JEE Main 2020 (Online) 4th September Morning Slot
162
Let A be a 3 $$ \times $$ 3 matrix such that
adj A = $$\left[ {\matrix{ 2 & { - 1} & 1 \cr { - 1} & 0 & 2 \cr 1 & { - 2} & { - 1} \cr } } \right]$$ and B = adj(adj A).

If |A| = $$\lambda $$ and |(B-1)T| = $$\mu $$ , then the ordered pair,
(|$$\lambda $$|, $$\mu $$) is equal to :
JEE Main 2020 (Online) 3rd September Evening Slot
163
If $$\Delta $$ = $$\left| {\matrix{ {x - 2} & {2x - 3} & {3x - 4} \cr {2x - 3} & {3x - 4} & {4x - 5} \cr {3x - 5} & {5x - 8} & {10x - 17} \cr } } \right|$$ =

Ax3 + Bx2 + Cx + D, then B + C is equal to :
JEE Main 2020 (Online) 3rd September Morning Slot
164
Let a, b, c $$ \in $$ R be all non-zero and satisfy
a3 + b3 + c3 = 2. If the matrix

A = $$\left( {\matrix{ a & b & c \cr b & c & a \cr c & a & b \cr } } \right)$$

satisfies ATA = I, then a value of abc can be :
JEE Main 2020 (Online) 2nd September Evening Slot
165
Let A = {X = (x, y, z)T: PX = 0 and

x2 + y2 + z2 = 1} where

$$P = \left[ {\matrix{ 1 & 2 & 1 \cr { - 2} & 3 & { - 4} \cr 1 & 9 & { - 1} \cr } } \right]$$,

then the set A :
JEE Main 2020 (Online) 2nd September Evening Slot
166
Let S be the set of all $$\lambda $$ $$ \in $$ R for which the system of linear equations

2x – y + 2z = 2
x – 2y + $$\lambda $$z = –4
x + $$\lambda $$y + z = 4

has no solution. Then the set S :
JEE Main 2020 (Online) 2nd September Morning Slot
167
Let A be a 2 $$ \times $$ 2 real matrix with entries from {0, 1} and |A| $$ \ne $$ 0. Consider the following two statements :

(P) If A $$ \ne $$ I2 , then |A| = –1
(Q) If |A| = 1, then tr(A) = 2,

where I2 denotes 2 $$ \times $$ 2 identity matrix and tr(A) denotes the sum of the diagonal entries of A. Then :
JEE Main 2020 (Online) 2nd September Morning Slot
168
The following system of linear equations
7x + 6y – 2z = 0
3x + 4y + 2z = 0
x – 2y – 6z = 0, has
JEE Main 2020 (Online) 9th January Evening Slot
169
If the matrices A = $$\left[ {\matrix{ 1 & 1 & 2 \cr 1 & 3 & 4 \cr 1 & { - 1} & 3 \cr } } \right]$$,

B = adjA and C = 3A, then $${{\left| {adjB} \right|} \over {\left| C \right|}}$$ is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
170
If for some $$\alpha $$ and $$\beta $$ in R, the intersection of the following three places
x + 4y – 2z = 1
x + 7y – 5z = b
x + 5y + $$\alpha $$z = 5
is a line in R3, then $$\alpha $$ + $$\beta $$ is equal to :
JEE Main 2020 (Online) 9th January Morning Slot
171
If $$A = \left( {\matrix{ 2 & 2 \cr 9 & 4 \cr } } \right)$$ and $$I = \left( {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right)$$ then 10A–1 is equal to :
JEE Main 2020 (Online) 8th January Evening Slot
172
The system of linear equations
$$\lambda $$x + 2y + 2z = 5
2$$\lambda $$x + 3y + 5z = 8
4x + $$\lambda $$y + 6z = 10 has
JEE Main 2020 (Online) 8th January Evening Slot
173
For which of the following ordered pairs ($$\mu $$, $$\delta $$), the system of linear equations
x + 2y + 3z = 1
3x + 4y + 5z = $$\mu $$
4x + 4y + 4z = $$\delta $$
is inconsistent ?
JEE Main 2020 (Online) 8th January Morning Slot
174
Let A = [aij] and B = [bij] be two 3 × 3 real matrices such that bij = (3)(i+j-2)aji, where i, j = 1, 2, 3. If the determinant of B is 81, then the determinant of A is:
JEE Main 2020 (Online) 7th January Evening Slot
175
Let $$\alpha $$ be a root of the equation x2 + x + 1 = 0 and the
matrix A = $${1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & 1 & 1 \cr 1 & \alpha & {{\alpha ^2}} \cr 1 & {{\alpha ^2}} & {{\alpha ^4}} \cr } } \right]$$

then the matrix A31 is equal to
JEE Main 2020 (Online) 7th January Morning Slot
176
If the system of linear equations
2x + 2ay + az = 0
2x + 3by + bz = 0
2x + 4cy + cz = 0,
where a, b, c $$ \in $$ R are non-zero distinct; has a non-zero solution, then:
JEE Main 2020 (Online) 7th January Morning Slot
177
A value of $$\theta \in \left( {0,{\pi \over 3}} \right)$$, for which
$$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$$, is :
JEE Main 2019 (Online) 12th April Evening Slot
178
If A is a symmetric matrix and B is a skew-symmetric matrix such that A + B = $$\left[ {\matrix{ 2 & 3 \cr 5 & { - 1} \cr } } \right]$$, then AB is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
179
If $$B = \left[ {\matrix{ 5 & {2\alpha } & 1 \cr 0 & 2 & 1 \cr \alpha & 3 & { - 1} \cr } } \right]$$ is the inverse of a 3 × 3 matrix A, then the sum of all values of $$\alpha $$ for which det(A) + 1 = 0, is :
JEE Main 2019 (Online) 12th April Morning Slot
180
Let $$\lambda $$ be a real number for which the system of linear equations x + y + z = 6, 4x + $$\lambda $$y – $$\lambda $$z = $$\lambda $$ – 2, 3x + 2y – 4z = – 5 has infinitely many solutions. Then $$\lambda $$ is a root of the quadratic equation:
JEE Main 2019 (Online) 10th April Evening Slot
181
The sum of the real roots of the equation
$$\left| {\matrix{ x & { - 6} & { - 1} \cr 2 & { - 3x} & {x - 3} \cr { - 3} & {2x} & {x + 2} \cr } } \right| = 0$$, is equal to :
JEE Main 2019 (Online) 10th April Evening Slot
182
If $${\Delta _1} = \left| {\matrix{ x & {\sin \theta } & {\cos \theta } \cr { - \sin \theta } & { - x} & 1 \cr {\cos \theta } & 1 & x \cr } } \right|$$ and
$${\Delta _2} = \left| {\matrix{ x & {\sin 2\theta } & {\cos 2\theta } \cr { - \sin 2\theta } & { - x} & 1 \cr {\cos 2\theta } & 1 & x \cr } } \right|$$, $$x \ne 0$$ ;

then for all $$\theta \in \left( {0,{\pi \over 2}} \right)$$ :
JEE Main 2019 (Online) 10th April Morning Slot
183
If the system of linear equations
x + y + z = 5
x + 2y + 2z = 6
x + 3y + $$\lambda $$z = $$\mu $$, ($$\lambda $$, $$\mu $$ $$ \in $$ R), has infinitely many solutions, then the value of $$\lambda $$ + $$\mu $$ is :
JEE Main 2019 (Online) 10th April Morning Slot
184
If the system of equations 2x + 3y – z = 0, x + ky – 2z = 0 and 2x – y + z = 0 has a non-trival solution (x, y, z), then $${x \over y} + {y \over z} + {z \over x} + k$$ is equal to :-
JEE Main 2019 (Online) 9th April Evening Slot
185
The total number of matrices
$$A = \left( {\matrix{ 0 & {2y} & 1 \cr {2x} & y & { - 1} \cr {2x} & { - y} & 1 \cr } } \right)$$
(x, y $$ \in $$ R,x $$ \ne $$ y) for which ATA = 3I3 is :-
JEE Main 2019 (Online) 9th April Evening Slot
186
Let $$\alpha $$ and $$\beta $$ be the roots of the equation x2 + x + 1 = 0. Then for y $$ \ne $$ 0 in R,
$$$\left| {\matrix{ {y + 1} & \alpha & \beta \cr \alpha & {y + \beta } & 1 \cr \beta & 1 & {y + \alpha } \cr } } \right|$$$ is equal to
JEE Main 2019 (Online) 9th April Morning Slot
187
If $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$$$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$....$$\left[ {\matrix{ 1 & {n - 1} \cr 0 & 1 \cr } } \right] = \left[ {\matrix{ 1 & {78} \cr 0 & 1 \cr } } \right]$$,

then the inverse of $$\left[ {\matrix{ 1 & n \cr 0 & 1 \cr } } \right]$$ is
JEE Main 2019 (Online) 9th April Morning Slot
188
Let the number 2,b,c be in an A.P. and
A = $$\left[ {\matrix{ 1 & 1 & 1 \cr 2 & b & c \cr 4 & {{b^2}} & {{c^2}} \cr } } \right]$$. If det(A) $$ \in $$ [2, 16], then c lies in the interval :
JEE Main 2019 (Online) 8th April Evening Slot
189
Let $$A = \left( {\matrix{ {\cos \alpha } & { - \sin \alpha } \cr {\sin \alpha } & {\cos \alpha } \cr } } \right)$$, ($$\alpha $$ $$ \in $$ R)
such that $${A^{32}} = \left( {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right)$$ then a value of $$\alpha $$ is
JEE Main 2019 (Online) 8th April Morning Slot
190
The greatest value of c $$ \in $$ R for which the system of linear equations
x – cy – cz = 0
cx – y + cz = 0
cx + cy – z = 0
has a non-trivial solution, is :
JEE Main 2019 (Online) 8th April Morning Slot
191
If   A = $$\left[ {\matrix{ 1 & {\sin \theta } & 1 \cr { - \sin \theta } & 1 & {\sin \theta } \cr { - 1} & { - \sin \theta } & 1 \cr } } \right]$$;

then for all $$\theta $$ $$ \in $$ $$\left( {{{3\pi } \over 4},{{5\pi } \over 4}} \right)$$, det (A) lies in the interval :
JEE Main 2019 (Online) 12th January Evening Slot
192
The set of all values of $$\lambda $$ for which the system of linear equations
x – 2y – 2z = $$\lambda $$x
x + 2y + z = $$\lambda $$y
– x – y = $$\lambda $$z
has a non-trivial solutions :
JEE Main 2019 (Online) 12th January Evening Slot
193
An ordered pair ($$\alpha $$, $$\beta $$) for which the system of linear equations
(1 + $$\alpha $$) x + $$\beta $$y + z = 2
$$\alpha $$x + (1 + $$\beta $$)y + z = 3
$$\alpha $$x + $$\beta $$y + 2z = 2
has a unique solution, is :
JEE Main 2019 (Online) 12th January Morning Slot
194
Let P = $$\left[ {\matrix{ 1 & 0 & 0 \cr 3 & 1 & 0 \cr 9 & 3 & 1 \cr } } \right]$$ and Q = [qij] be two 3 $$ \times $$ 3 matrices such that Q – P5 = I3.

Then $${{{q_{21}} + {q_{31}}} \over {{q_{32}}}}$$ is equal to :
JEE Main 2019 (Online) 12th January Morning Slot
195
Let A and B be two invertible matrices of order 3 $$ \times $$ 3. If det(ABAT) = 8 and det(AB–1) = 8,
then det (BA–1 BT) is equal to :
JEE Main 2019 (Online) 11th January Evening Slot
196
If  $$\left| {\matrix{ {a - b - c} & {2a} & {2a} \cr {2b} & {b - c - a} & {2b} \cr {2c} & {2c} & {c - a - b} \cr } } \right|$$

      = (a + b + c) (x + a + b + c)2, x $$ \ne $$ 0,

then x is equal to :
JEE Main 2019 (Online) 11th January Evening Slot
197
If the system of linear equations
2x + 2y + 3z = a
3x – y + 5z = b
x – 3y + 2z = c
where a, b, c are non zero real numbers, has more one solution, then :
JEE Main 2019 (Online) 11th January Morning Slot
198
Let A = $$\left( {\matrix{ 0 & {2q} & r \cr p & q & { - r} \cr p & { - q} & r \cr } } \right).$$   If  AAT = I3,   then   $$\left| p \right|$$ is :
JEE Main 2019 (Online) 11th January Morning Slot
199
Let A = $$\left[ {\matrix{ 2 & b & 1 \cr b & {{b^2} + 1} & b \cr 1 & b & 2 \cr } } \right]$$ where b > 0.

Then the minimum value of $${{\det \left( A \right)} \over b}$$ is -
JEE Main 2019 (Online) 10th January Evening Slot
200
The number of values of $$\theta $$ $$ \in $$ (0, $$\pi $$) for which the system of linear equations

x + 3y + 7z = 0

$$-$$ x + 4y + 7z = 0

(sin3$$\theta $$)x + (cos2$$\theta $$)y + 2z = 0.

has a non-trival solution, is -
JEE Main 2019 (Online) 10th January Evening Slot
201
If the system of equations

x + y + z = 5

x + 2y + 3z = 9

x + 3y + az = $$\beta $$

has infinitely many solutions, then $$\beta $$ $$-$$ $$\alpha $$ equals -
JEE Main 2019 (Online) 10th January Morning Slot
202
Let  d $$ \in $$ R, and 

$$A = \left[ {\matrix{ { - 2} & {4 + d} & {\left( {\sin \theta } \right) - 2} \cr 1 & {\left( {\sin \theta } \right) + 2} & d \cr 5 & {\left( {2\sin \theta } \right) - d} & {\left( { - \sin \theta } \right) + 2 + 2d} \cr } } \right],$$

$$\theta \in \left[ {0,2\pi } \right]$$ If the minimum value of det(A) is 8, then a value of d is -
JEE Main 2019 (Online) 10th January Morning Slot
203
If the system of linear equations
x $$-$$ 4y + 7z = g
       3y $$-$$ 5z = h
$$-$$2x + 5y $$-$$ 9z = k
is consistent, then :
JEE Main 2019 (Online) 9th January Evening Slot
204
If   $$A = \left[ {\matrix{ {{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr {{e^t}} & { - {e^{ - t}}\cos t - {e^{ - t}}\sin t} & { - {e^{ - t}}\sin t + {e^{ - t}}co{\mathop{\rm s}\nolimits} t} \cr {{e^t}} & {2{e^{ - t}}\sin t} & { - 2{e^{ - t}}\cos t} \cr } } \right]$$

then A is :
JEE Main 2019 (Online) 9th January Evening Slot
205
If $$A = \left[ {\matrix{ {\cos \theta } & { - \sin \theta } \cr {\sin \theta } & {\cos \theta } \cr } } \right]$$, then the matrix A–50 when $$\theta $$ = $$\pi \over 12$$, is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
206
The system of linear equations
x + y + z = 2
2x + 3y + 2z = 5
2x + 3y + (a2 – 1) z = a + 1 then
JEE Main 2019 (Online) 9th January Morning Slot
207
The number of values of k for which the system of linear equations,
(k + 2)x + 10y = k
kx + (k +3)y = k -1
has no solution, is :
JEE Main 2018 (Online) 16th April Morning Slot
208
Let A = $$\left[ {\matrix{ 1 & 0 & 0 \cr 1 & 1 & 0 \cr 1 & 1 & 1 \cr } } \right]$$ and B = A20. Then the sum of the elements of the first column of B is :
JEE Main 2018 (Online) 16th April Morning Slot
209
If $$\left| {\matrix{ {x - 4} & {2x} & {2x} \cr {2x} & {x - 4} & {2x} \cr {2x} & {2x} & {x - 4} \cr } } \right| = \left( {A + Bx} \right){\left( {x - A} \right)^2}$$

then the ordered pair (A, B) is equal to :
JEE Main 2018 (Offline)
210
If the system of linear equations

x + ky + 3z = 0
3x + ky - 2z = 0
2x + 4y - 3z = 0

has a non-zero solution (x, y, z), then $${{xz} \over {{y^2}}}$$ is equal to
JEE Main 2018 (Offline)
211
Suppose A is any 3$$ \times $$ 3 non-singular matrix and ( A $$-$$ 3I) (A $$-$$ 5I) = O where I = I3 and O = O3. If $$\alpha $$A + $$\beta $$A-1 = 4I, then $$\alpha $$ + $$\beta $$ is equal to :
JEE Main 2018 (Online) 15th April Evening Slot
212
If the system of linear equations
x + ay + z = 3
x + 2y + 2z = 6
x + 5y + 3z = b
has no solution, then :
JEE Main 2018 (Online) 15th April Evening Slot
213
Let $$A$$ be a matrix such that $$A.\left[ {\matrix{ 1 & 2 \cr 0 & 3 \cr } } \right]$$ is a scalar matrix and |3A| = 108.
Then A2 equals :
JEE Main 2018 (Online) 15th April Morning Slot
214
Let S be the set of all real values of k for which the systemof linear equations
x + y + z = 2
2x + y $$-$$ z = 3
3x + 2y + kz = 4
has a unique solution. Then S is :
JEE Main 2018 (Online) 15th April Morning Slot
215
For two 3 × 3 matrices A and B, let A + B = 2BT and 3A + 2B = I3, where BT is the transpose of B and I3 is 3 × 3 identity matrix. Then :
JEE Main 2017 (Online) 9th April Morning Slot
216
If

$$S = \left\{ {x \in \left[ {0,2\pi } \right]:\left| {\matrix{ 0 & {\cos x} & { - \sin x} \cr {\sin x} & 0 & {\cos x} \cr {\cos x} & {\sin x} & 0 \cr } } \right| = 0} \right\},$$

then $$\sum\limits_{x \in S} {\tan \left( {{\pi \over 3} + x} \right)} $$ is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
217
The number of real values of $$\lambda $$ for which the system of linear equations

2x + 4y $$-$$ $$\lambda $$z = 0

4x + $$\lambda $$y + 2z = 0

$$\lambda $$x + 2y + 2z = 0

has infinitely many solutions, is :
JEE Main 2017 (Online) 8th April Morning Slot
218
Let A be any 3 $$ \times $$ 3 invertible matrix. Then which one of the following is not always true ?
JEE Main 2017 (Online) 8th April Morning Slot
219
If $$A = \left[ {\matrix{ 2 & { - 3} \cr { - 4} & 1 \cr } } \right]$$,

then adj(3A2 + 12A) is equal to
JEE Main 2017 (Offline)
220
If S is the set of distinct values of 'b' for which the following system of linear equations

x + y + z = 1
x + ay + z = 1
ax + by + z = 0

has no solution, then S is :
JEE Main 2017 (Offline)
221
If    A = $$\left[ {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right]$$,

then the determinant of the matrix (A2016 − 2A2015 − A2014) is :
JEE Main 2016 (Online) 10th April Morning Slot
222
Let A be a 3 $$ \times $$ 3 matrix such that A2 $$-$$ 5A + 7I = 0

Statement - I :  

A$$-$$1 = $${1 \over 7}$$ (5I $$-$$ A).

Statement - II :

The polynomial A3 $$-$$ 2A2 $$-$$ 3A + I can be reduced to 5(A $$-$$ 4I).

Then :
JEE Main 2016 (Online) 10th April Morning Slot
223
The number of distinct real roots of the equation,

$$\left| {\matrix{ {\cos x} & {\sin x} & {\sin x} \cr {\sin x} & {\cos x} & {\sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right| = 0$$ in the interval $$\left[ { - {\pi \over 4},{\pi \over 4}} \right]$$ is :
JEE Main 2016 (Online) 9th April Morning Slot
224
If P = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr { - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right],A = \left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\,\,\,$$

Q = PAPT, then PT Q2015 P is :
JEE Main 2016 (Online) 9th April Morning Slot
225

The system of linear equations

$$\matrix{ {x + \lambda y - z = 0} \cr {\lambda x - y - z = 0} \cr {x + y - \lambda z = 0} \cr } $$

has a non-trivial solution for :
JEE Main 2016 (Offline)
226
If $$A = \left[ {\matrix{ {5a} & { - b} \cr 3 & 2 \cr } } \right]$$ and $$A$$ adj $$A=A$$ $${A^T},$$ then $$5a+b$$ is equal to :
JEE Main 2016 (Offline)
227
The set of all values of $$\lambda $$ for which the system of linear equations:

$$\matrix{ {2{x_1} - 2{x_2} + {x_3} = \lambda {x_1}} \cr {2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2}} \cr { - {x_1} + 2{x_2} = \lambda {x_3}} \cr } $$

has a non-trivial solution
JEE Main 2015 (Offline)
228
If $$A = \left[ {\matrix{ 1 & 2 & 2 \cr 2 & 1 & { - 2} \cr a & 2 & b \cr } } \right]$$ is a matrix satisfying the equation

$$A{A^T} = 9\text{I},$$ where $$I$$ is $$3 \times 3$$ identity matrix, then the ordered

pair $$(a, b)$$ is equal to :
JEE Main 2015 (Offline)
229
If $$\alpha ,\beta \ne 0,$$ and $$f\left( n \right) = {\alpha ^n} + {\beta ^n}$$ and $$$\left| {\matrix{ 3 & {1 + f\left( 1 \right)} & {1 + f\left( 2 \right)} \cr {1 + f\left( 1 \right)} & {1 + f\left( 2 \right)} & {1 + f\left( 3 \right)} \cr {1 + f\left( 2 \right)} & {1 + f\left( 3 \right)} & {1 + f\left( 4 \right)} \cr } } \right|$$$
$$ = K{\left( {1 - \alpha } \right)^2}{\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2},$$ then $$K$$ is equal to :
JEE Main 2014 (Offline)
230
If $$A$$ is a $$3 \times 3$$ non-singular matrix such that $$AA'=A'A$$ and
$$B = {A^{ - 1}}A',$$ then $$BB'$$ equals:
JEE Main 2014 (Offline)
231
The number of values of $$k$$, for which the system of equations : $$$\matrix{ {\left( {k + 1} \right)x + 8y = 4k} \cr {kx + \left( {k + 3} \right)y = 3k - 1} \cr } $$$
has no solution, is
JEE Main 2013 (Offline)
232
If $$P = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and
$$\left| A \right| = 4,$$ then $$\alpha $$ is equal to :
JEE Main 2013 (Offline)
233
Let $$P$$ and $$Q$$ be $$3 \times 3$$ matrices $$P \ne Q.$$ If $${P^3} = {Q^3}$$ and
$${P^2}Q = {Q^2}P$$ then determinant of $$\left( {{P^2} + {Q^2}} \right)$$ is equal to :
AIEEE 2012
234
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right)$$. If $${u_1}$$ and $${u_2}$$ are column matrices such
that $$A{u_1} = \left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right)$$ and $$A{u_2} = \left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),$$ then $${u_1} + {u_2}$$ is equal to :
AIEEE 2012
235
Let $$A$$ and $$B$$ be two symmetric matrices of order $$3$$.

Statement - 1 : $$A(BA)$$ and $$(AB)$$$$A$$ are symmetric matrices.

Statement - 2 : $$AB$$ is symmetric matrix if matrix multiplication of $$A$$ with $$B$$ is commutative.
AIEEE 2011
236
The number of values of $$k$$ for which the linear equations
$$4x + ky + 2z = 0,kx + 4y + z = 0$$ and $$2x+2y+z=0$$ possess a non-zero solution is :
AIEEE 2011
237
Let $$A$$ be a $$\,2 \times 2$$ matrix with non-zero entries and let $${A^2} = I,$$
where $$I$$ is $$2 \times 2$$ identity matrix. Define
$$Tr$$$$(A)=$$ sum of diagonal elements of $$A$$ and $$\left| A \right| = $$ determinant of matrix $$A$$.
Statement- 1: $$Tr$$$$(A)=0$$.
Statement- 2: $$\left| A \right| = 1$$ .
AIEEE 2010
238
Consider the system of linear equations; $$$\matrix{ {{x_1} + 2{x_2} + {x_3} = 3} \cr {2{x_1} + 3{x_2} + {x_3} = 3} \cr {3{x_1} + 5{x_2} + 2{x_3} = 1} \cr } $$$
The system has :
AIEEE 2010
239
The number of $$3 \times 3$$ non-singular matrices, with four entries as $$1$$ and all other entries as $$0$$, is :
AIEEE 2010
240
Let $$A$$ be a $$\,2 \times 2$$ matrix
Statement - 1 : $$adj\left( {adj\,A} \right) = A$$
Statement - 2 :$$\left| {adj\,A} \right| = \left| A \right|$$
AIEEE 2009
241
Let $$a, b, c$$ be such that $$b\left( {a + c} \right) \ne 0$$ if

$$\left| {\matrix{ a & {a + 1} & {a - 1} \cr { - b} & {b + 1} & {b - 1} \cr c & {c - 1} & {c + 1} \cr } } \right| + \left| {\matrix{ {a + 1} & {b + 1} & {c - 1} \cr {a - 1} & {b - 1} & {c + 1} \cr {{{\left( { - 1} \right)}^{n + 2}}a} & {{{\left( { - 1} \right)}^{n + 1}}b} & {{{\left( { - 1} \right)}^n}c} \cr } } \right| = 0$$

then the value of $$n$$ :

AIEEE 2009
242
Let $$A$$ be $$a\,2 \times 2$$ matrix with real entries. Let $$I$$ be the $$2 \times 2$$ identity matrix. Denote by tr$$(A)$$, the sum of diagonal entries of $$a$$. Assume that $${a^2} = I.$$
Statement-1 : If $$A \ne I$$ and $$A \ne - I$$, then det$$(A)=-1$$
Statement- 2 : If $$A \ne I$$ and $$A \ne - I$$, then tr $$(A)$$ $$ \ne 0$$.
AIEEE 2008
243
Let $$a, b, c$$ be any real numbers. Suppose that there are real numbers $$x, y, z$$ not all zero such that $$x=cy+bz,$$ $$y=az+cx,$$ and $$z=bx+ay.$$ Then $${a^2} + {b^2} + {c^2} + 2abc$$ is equal to :
AIEEE 2008
244
Let $$A$$ be a square matrix all of whose entries are integers.
Then which one of the following is true?
AIEEE 2008
245
Let $$A = \left| {\matrix{ 5 & {5\alpha } & \alpha \cr 0 & \alpha & {5\alpha } \cr 0 & 0 & 5 \cr } } \right|.$$ If $$\,\,\left| {{A^2}} \right| = 25,$$ then $$\,\left| \alpha \right|$$ equals
AIEEE 2007
246
If $$D = \left| {\matrix{ 1 & 1 & 1 \cr 1 & {1 + x} & 1 \cr 1 & 1 & {1 + y} \cr } } \right|$$ for $$x \ne 0,y \ne 0,$$ then $$D$$ is :
AIEEE 2007
247
If $$A$$ and $$B$$ are square matrices of size $$n\, \times \,n$$ such that
$${A^2} - {B^2} = \left( {A - B} \right)\left( {A + B} \right),$$ then which of the following will be always true?
AIEEE 2006
248
Let $$A = \left( {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right)$$ and $$B = \left( {\matrix{ a & 0 \cr 0 & b \cr } } \right),a,b \in N.$$ Then
AIEEE 2006
249
If $${A^2} - A + 1 = 0$$, then the inverse of $$A$$ is :
AIEEE 2005
250
The system of equations

$$\matrix{ {\alpha \,x + y + z = \alpha - 1} \cr {x + \alpha y + z = \alpha - 1} \cr {x + y + \alpha \,z = \alpha - 1} \cr } $$

has no solutions, if $$\alpha $$ is :

AIEEE 2005
251
If $${a_1},{a_2},{a_3},........,{a_n},.....$$ are in G.P., then the determinant $$$\Delta = \left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|$$$
is equal to :
AIEEE 2005
252
If $${a^2} + {b^2} + {c^2} = - 2$$ and

f$$\left( x \right) = \left| {\matrix{ {1 + {a^2}x} & {\left( {1 + {b^2}} \right)x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {1 + {b^2}x} & {\left( {1 + {c^2}} \right)x} \cr {\left( {1 + {a^2}} \right)x} & {\left( {1 + {b^2}} \right)x} & {1 + {c^2}x} \cr } } \right|,$$

then f$$(x)$$ is a polynomial of degree :

AIEEE 2005
253
Let $$A = \left( {\matrix{ 0 & 0 & { - 1} \cr 0 & { - 1} & 0 \cr { - 1} & 0 & 0 \cr } } \right)$$. The only correct

statement about the matrix $$A$$ is

AIEEE 2004
254
Let $$A = \left( {\matrix{ 1 & { - 1} & 1 \cr 2 & 1 & { - 3} \cr 1 & 1 & 1 \cr } } \right).$$ and $$10$$ $$B = \left( {\matrix{ 4 & 2 & 2 \cr { - 5} & 0 & \alpha \cr 1 & { - 2} & 3 \cr } } \right)$$. if $$B$$ is

the inverse of matrix $$A$$, then $$\alpha $$ is

AIEEE 2004
255
If $${a_1},{a_2},{a_3},.........,{a_n},......$$ are in G.P., then the value of the determinant

$$\left| {\matrix{ {\log {a_n}} & {\log {a_{n + 1}}} & {\log {a_{n + 2}}} \cr {\log {a_{n + 3}}} & {\log {a_{n + 4}}} & {\log {a_{n + 5}}} \cr {\log {a_{n + 6}}} & {\log {a_{n + 7}}} & {\log {a_{n + 8}}} \cr } } \right|,$$ is

AIEEE 2004
256
If $$A = \left[ {\matrix{ a & b \cr b & a \cr } } \right]$$ and $${A^2} = \left[ {\matrix{ \alpha & \beta \cr \beta & \alpha \cr } } \right]$$, then
AIEEE 2003
257
If $$1,$$ $$\omega ,{\omega ^2}$$ are the cube roots of unity, then

$$\Delta = \left| {\matrix{ 1 & {{\omega ^n}} & {{\omega ^{2n}}} \cr {{\omega ^n}} & {{\omega ^{2n}}} & 1 \cr {{\omega ^{2n}}} & 1 & {{\omega ^n}} \cr } } \right|$$ is equal to

AIEEE 2003
258
If the system of linear equations
$$x + 2ay + az = 0;$$ $$x + 3by + bz = 0;\,\,x + 4cy + cz = 0;$$
has a non - zero solution, then $$a, b, c$$.
AIEEE 2003
259
If $$a>0$$ and discriminant of $$\,a{x^2} + 2bx + c$$ is $$-ve$$, then
$$\left| {\matrix{ a & b & {ax + b} \cr b & c & {bx + c} \cr {ax + b} & {bx + c} & 0 \cr } } \right|$$ is equal to
AIEEE 2002

Numerical

1

Let $S=\left\{m \in \mathbf{Z}: A^{m^2}+A^m=3 I-A^{-6}\right\}$, where $A=\left[\begin{array}{cc}2 & -1 \\ 1 & 0\end{array}\right]$. Then $n(S)$ is equal to __________.

JEE Main 2025 (Online) 29th January Morning Shift
2

Let M denote the set of all real matrices of order $3 \times 3$ and let $\mathrm{S}=\{-3,-2,-1,1,2\}$. Let

$$\begin{aligned} & \mathrm{S}_1=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_2=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: \mathrm{A}=-\mathrm{A}^{\mathrm{T}} \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\}, \\ & \mathrm{S}_3=\left\{\mathrm{A}=\left[a_{\mathrm{ij}}\right] \in \mathrm{M}: a_{11}+a_{22}+a_{33}=0 \text { and } a_{\mathrm{ij}} \in \mathrm{~S}, \forall \mathrm{i}, \mathrm{j}\right\} . \end{aligned}$$

If $n\left(S_1 \cup S_2 \cup S_3\right)=125 \alpha$, then $\alpha$ equls __________.

JEE Main 2025 (Online) 28th January Morning Shift
3

Let A be a $3 \times 3$ matrix such that $\mathrm{X}^{\mathrm{T}} \mathrm{AX}=\mathrm{O}$ for all nonzero $3 \times 1$ matrices $X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. If $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}1 \\ 4 \\ -5\end{array}\right], \mathrm{A}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{c}0 \\ 4 \\ -8\end{array}\right]$, and $\operatorname{det}(\operatorname{adj}(2(\mathrm{~A}+\mathrm{I})))=2^\alpha 3^\beta 5^\gamma, \alpha, \beta, \gamma \in N$, then $\alpha^2+\beta^2+\gamma^2$ is

JEE Main 2025 (Online) 24th January Morning Shift
4

Let $A$ be a square matrix of order 3 such that $\operatorname{det}(A)=-2$ and $\operatorname{det}(3 \operatorname{adj}(-6 \operatorname{adj}(3 A)))=2^{m+n} \cdot 3^{m n}, m>n$. Then $4 m+2 n$ is equal to __________.

JEE Main 2025 (Online) 22nd January Morning Shift
5

Consider the matrices : $$A=\left[\begin{array}{cc}2 & -5 \\ 3 & m\end{array}\right], B=\left[\begin{array}{l}20 \\ m\end{array}\right]$$ and $$X=\left[\begin{array}{l}x \\ y\end{array}\right]$$. Let the set of all $$m$$, for which the system of equations $$A X=B$$ has a negative solution (i.e., $$x<0$$ and $$y<0$$), be the interval $$(a, b)$$. Then $$8 \int_\limits a^b|A| d m$$ is equal to _________.

JEE Main 2024 (Online) 9th April Evening Shift
6

Let $$A$$ be a non-singular matrix of order 3. If $$\operatorname{det}(3 \operatorname{adj}(2 \operatorname{adj}((\operatorname{det} A) A)))=3^{-13} \cdot 2^{-10}$$ and $$\operatorname{det}(3\operatorname{adj}(2 \mathrm{A}))=2^{\mathrm{m}} \cdot 3^{\mathrm{n}}$$, then $$|3 \mathrm{~m}+2 \mathrm{n}|$$ is equal to _________.

JEE Main 2024 (Online) 9th April Morning Shift
7

Let $$A=\left[\begin{array}{cc}2 & -1 \\ 1 & 1\end{array}\right]$$. If the sum of the diagonal elements of $$A^{13}$$ is $$3^n$$, then $$n$$ is equal to ________.

JEE Main 2024 (Online) 8th April Morning Shift
8

If the system of equations

$$\begin{aligned} & 2 x+7 y+\lambda z=3 \\ & 3 x+2 y+5 z=4 \\ & x+\mu y+32 z=-1 \end{aligned}$$

has infinitely many solutions, then $$(\lambda-\mu)$$ is equal to ______ :

JEE Main 2024 (Online) 6th April Evening Shift
9

Let $$\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in \mathbb{R}$$. If $$x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$$ for some $$x, y, z \in \mathbb{R}, x y z \neq 0$$, then $$6 \alpha+4 \beta+\gamma$$ is equal to _________.

JEE Main 2024 (Online) 6th April Morning Shift
10

Let $$A$$ be a $$2 \times 2$$ symmetric matrix such that $$A\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 7\end{array}\right]$$ and the determinant of $$A$$ be 1 . If $$A^{-1}=\alpha A+\beta I$$, where $$I$$ is an identity matrix of order $$2 \times 2$$, then $$\alpha+\beta$$ equals _________.

JEE Main 2024 (Online) 4th April Evening Shift
11

Let $$A$$ be a square matrix of order 2 such that $$|A|=2$$ and the sum of its diagonal elements is $$-$$3 . If the points $$(x, y)$$ satisfying $$\mathrm{A}^2+x \mathrm{~A}+y \mathrm{I}=\mathrm{O}$$ lie on a hyperbola, whose transverse axis is parallel to the $$x$$-axis, eccentricity is $$\mathrm{e}$$ and the length of the latus rectum is $$l$$, then $$\mathrm{e}^4+l^4$$ is equal to ________.

JEE Main 2024 (Online) 4th April Morning Shift
12

Let $$A$$ be a $$3 \times 3$$ matrix of non-negative real elements such that $$A\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$$. Then the maximum value of $$\operatorname{det}(\mathrm{A})$$ is _________.

JEE Main 2024 (Online) 4th April Morning Shift
13
Let $A=I_2-2 M M^T$, where $M$ is a real matrix of order $2 \times 1$ such that the relation $M^T M=I_1$ holds. If $\lambda$ is a real number such that the relation $A X=\lambda X$ holds for some non-zero real matrix $X$ of order $2 \times 1$, then the sum of squares of all possible values of $\lambda$ is equal to __________.
JEE Main 2024 (Online) 1st February Evening Shift
14

Let A be a $$3 \times 3$$ matrix and $$\operatorname{det}(A)=2$$. If $$n=\operatorname{det}(\underbrace{\operatorname{adj}(\operatorname{adj}(\ldots . .(\operatorname{adj} A))}_{2024-\text { times }}))$$, then the remainder when $$n$$ is divided by 9 is equal to __________.

JEE Main 2024 (Online) 31st January Evening Shift
15

Let for any three distinct consecutive terms $$a, b, c$$ of an A.P, the lines $$a x+b y+c=0$$ be concurrent at the point $$P$$ and $$Q(\alpha, \beta)$$ be a point such that the system of equations

$$\begin{aligned} & x+y+z=6, \\ & 2 x+5 y+\alpha z=\beta \text { and } \end{aligned}$$

$$x+2 y+3 z=4$$, has infinitely many solutions. Then $$(P Q)^2$$ is equal to _________.

JEE Main 2024 (Online) 29th January Evening Shift
16

Let $$A$$ be a $$2 \times 2$$ real matrix and $$I$$ be the identity matrix of order 2. If the roots of the equation $$|\mathrm{A}-x \mathrm{I}|=0$$ be $$-1$$ and 3, then the sum of the diagonal elements of the matrix $$\mathrm{A}^2$$ is

JEE Main 2024 (Online) 27th January Evening Shift
17
Let $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], B=\left[B_1, B_2, B_3\right]$, where $B_1, B_2, B_3$ are column matrics, and

$$ \mathrm{AB}_1=\left[\begin{array}{l} 1 \\ 0 \\ 0 \end{array}\right], \mathrm{AB}_2=\left[\begin{array}{l} 2 \\ 3 \\ 0 \end{array}\right], \quad \mathrm{AB}_3=\left[\begin{array}{l} 3 \\ 2 \\ 1 \end{array}\right] $$

If $\alpha=|B|$ and $\beta$ is the sum of all the diagonal elements of $B$, then $\alpha^3+\beta^3$ is equal to ____________.
JEE Main 2024 (Online) 27th January Morning Shift
18

Let $$\mathrm{D}_{\mathrm{k}}=\left|\begin{array}{ccc}1 & 2 k & 2 k-1 \\ n & n^{2}+n+2 & n^{2} \\ n & n^{2}+n & n^{2}+n+2\end{array}\right|$$. If $$\sum_\limits{k=1}^{n} \mathrm{D}_{\mathrm{k}}=96$$, then $$n$$ is equal to _____________.

JEE Main 2023 (Online) 12th April Morning Shift
19

Let $$A=\left[\begin{array}{lll}0 & 1 & 2 \\ a & 0 & 3 \\ 1 & c & 0\end{array}\right]$$, where $$a, c \in \mathbb{R}$$. If $$A^{3}=A$$ and the positive value of $$a$$ belongs to the interval $$(n-1, n]$$, where $$n \in \mathbb{N}$$, then $$n$$ is equal to ___________.

JEE Main 2023 (Online) 11th April Morning Shift
20

Let $$\mathrm{S}$$ be the set of values of $$\lambda$$, for which the system of equations

$$6 \lambda x-3 y+3 z=4 \lambda^{2}$$,

$$2 x+6 \lambda y+4 z=1$$,

$$3 x+2 y+3 \lambda z=\lambda$$ has no solution. Then $$12 \sum_\limits{i \in S}|\lambda|$$ is equal to ___________.

JEE Main 2023 (Online) 10th April Evening Shift
21
Let A be a $n \times n$ matrix such that $|\mathrm{A}|=2$. If the determinant of the matrix $\operatorname{Adj}\left(2 \cdot \operatorname{Adj}\left(2 \mathrm{~A}^{-1}\right)\right) \cdot$ is $2^{84}$, then $\mathrm{n}$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
22

Let A be a symmetric matrix such that $$\mathrm{|A|=2}$$ and $$\left[ {\matrix{ 2 & 1 \cr 3 & {{3 \over 2}} \cr } } \right]A = \left[ {\matrix{ 1 & 2 \cr \alpha & \beta \cr } } \right]$$. If the sum of the diagonal elements of A is $$s$$, then $$\frac{\beta s}{\alpha^2}$$ is equal to __________.

JEE Main 2023 (Online) 29th January Evening Shift
23

Let $$\mathrm{A_1,A_2,A_3}$$ be the three A.P. with the same common difference d and having their first terms as $$\mathrm{A,A+1,A+2}$$, respectively. Let a, b, c be the $$\mathrm{7^{th},9^{th},17^{th}}$$ terms of $$\mathrm{A_1,A_2,A_3}$$, respective such that $$\left| {\matrix{ a & 7 & 1 \cr {2b} & {17} & 1 \cr c & {17} & 1 \cr } } \right| + 70 = 0$$.

If $$a=29$$, then the sum of first 20 terms of an AP whose first term is $$c-a-b$$ and common difference is $$\frac{d}{12}$$, is equal to ___________.

JEE Main 2023 (Online) 25th January Morning Shift
24

Let $$X=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$$ and $$A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$$. For $$\mathrm{k} \in N$$, if $$X^{\prime} A^{k} X=33$$, then $$\mathrm{k}$$ is equal to _______.

JEE Main 2022 (Online) 29th July Evening Shift
25

Let p and p + 2 be prime numbers and let

$$ \Delta=\left|\begin{array}{ccc} \mathrm{p} ! & (\mathrm{p}+1) ! & (\mathrm{p}+2) ! \\ (\mathrm{p}+1) ! & (\mathrm{p}+2) ! & (\mathrm{p}+3) ! \\ (\mathrm{p}+2) ! & (\mathrm{p}+3) ! & (\mathrm{p}+4) ! \end{array}\right| $$

Then the sum of the maximum values of $$\alpha$$ and $$\beta$$, such that $$\mathrm{p}^{\alpha}$$ and $$(\mathrm{p}+2)^{\beta}$$ divide $$\Delta$$, is __________.

JEE Main 2022 (Online) 29th July Morning Shift
26

Let $$A=\left[\begin{array}{cc}1 & -1 \\ 2 & \alpha\end{array}\right]$$ and $$B=\left[\begin{array}{cc}\beta & 1 \\ 1 & 0\end{array}\right], \alpha, \beta \in \mathbf{R}$$. Let $$\alpha_{1}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{A}^{2}+\left[\begin{array}{ll}2 & 2 \\ 2 & 2\end{array}\right]$$ and $$\alpha_{2}$$ be the value of $$\alpha$$ which satisfies $$(\mathrm{A}+\mathrm{B})^{2}=\mathrm{B}^{2}$$. Then $$\left|\alpha_{1}-\alpha_{2}\right|$$ is equal to ___________.

JEE Main 2022 (Online) 28th July Morning Shift
27

Consider a matrix $$A=\left[\begin{array}{ccc}\alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2} \\ \beta+\gamma & \gamma+\alpha & \alpha+\beta\end{array}\right]$$, where $$\alpha, \beta, \gamma$$ are three distinct natural numbers.

If $$\frac{\operatorname{det}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj}(\operatorname{adj} A))))}{(\alpha-\beta)^{16}(\beta-\gamma)^{16}(\gamma-\alpha)^{16}}=2^{32} \times 3^{16}$$, then the number of such 3 - tuples $$(\alpha, \beta, \gamma)$$ is ____________.

JEE Main 2022 (Online) 27th July Evening Shift
28

Let $$S$$ be the set containing all $$3 \times 3$$ matrices with entries from $$\{-1,0,1\}$$. The total number of matrices $$A \in S$$ such that the sum of all the diagonal elements of $$A^{\mathrm{T}} A$$ is 6 is ____________.

JEE Main 2022 (Online) 27th July Morning Shift
29

The number of matrices $$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$$, where $$a, b, c, d \in\{-1,0,1,2,3, \ldots \ldots, 10\}$$, such that $$A=A^{-1}$$, is ___________.

JEE Main 2022 (Online) 26th July Evening Shift
30

Let $$A=\left[\begin{array}{lll} 1 & a & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array}\right], a, b \in \mathbb{R}$$. If for some

$$n \in \mathbb{N}, A^{n}=\left[\begin{array}{ccc} 1 & 48 & 2160 \\ 0 & 1 & 96 \\ 0 & 0 & 1 \end{array}\right] $$ then $$n+a+b$$ is equal to ____________.

JEE Main 2022 (Online) 25th July Evening Shift
31

Let $$A=\left(\begin{array}{rrr}2 & -1 & -1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right)$$ and $$B=A-I$$. If $$\omega=\frac{\sqrt{3} i-1}{2}$$, then the number of elements in the $$\operatorname{set}\left\{n \in\{1,2, \ldots, 100\}: A^{n}+(\omega B)^{n}=A+B\right\}$$ is equal to ____________.

JEE Main 2022 (Online) 25th July Morning Shift
32

Let $$M = \left[ {\matrix{ 0 & { - \alpha } \cr \alpha & 0 \cr } } \right]$$, where $$\alpha$$ is a non-zero real number an $$N = \sum\limits_{k = 1}^{49} {{M^{2k}}} $$. If $$(I - {M^2})N = - 2I$$, then the positive integral value of $$\alpha$$ is ____________.

JEE Main 2022 (Online) 29th June Evening Shift
33

If the system of linear equations
$$2x - 3y = \gamma + 5$$,
$$\alpha x + 5y = \beta + 1$$, where $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R has infinitely many solutions then the value
of | 9$$\alpha$$ + 3$$\beta$$ + 5$$\gamma$$ | is equal to ____________.

JEE Main 2022 (Online) 28th June Evening Shift
34

Let $$A = \left( {\matrix{ {1 + i} & 1 \cr { - i} & 0 \cr } } \right)$$ where $$i = \sqrt { - 1} $$. Then, the number of elements in the set { n $$\in$$ {1, 2, ......, 100} : An = A } is ____________.

JEE Main 2022 (Online) 28th June Evening Shift
35

The positive value of the determinant of the matrix A, whose

Adj(Adj(A)) = $$\left( {\matrix{ {14} & {28} & { - 14} \cr { - 14} & {14} & {28} \cr {28} & { - 14} & {14} \cr } } \right)$$, is _____________.

JEE Main 2022 (Online) 27th June Morning Shift
36

Let $$X = \left[ {\matrix{ 0 & 1 & 0 \cr 0 & 0 & 1 \cr 0 & 0 & 0 \cr } } \right],\,Y = \alpha I + \beta X + \gamma {X^2}$$ and $$Z = {\alpha ^2}I - \alpha \beta X + ({\beta ^2} - \alpha \gamma ){X^2}$$, $$\alpha$$, $$\beta$$, $$\gamma$$ $$\in$$ R. If $${Y^{ - 1}} = \left[ {\matrix{ {{1 \over 5}} & {{{ - 2} \over 5}} & {{1 \over 5}} \cr 0 & {{1 \over 5}} & {{{ - 2} \over 5}} \cr 0 & 0 & {{1 \over 5}} \cr } } \right]$$, then ($$\alpha$$ $$-$$ $$\beta$$ + $$\gamma$$)2 is equal to ____________.

JEE Main 2022 (Online) 26th June Evening Shift
37

Let $$A = \left( {\matrix{ 2 & { - 2} \cr 1 & { - 1} \cr } } \right)$$ and $$B = \left( {\matrix{ { - 1} & 2 \cr { - 1} & 2 \cr } } \right)$$. Then the number of elements in the set {(n, m) : n, m $$\in$$ {1, 2, .........., 10} and nAn + mBm = I} is ____________.

JEE Main 2022 (Online) 25th June Evening Shift
38

Let $$S = \left\{ {\left( {\matrix{ { - 1} & a \cr 0 & b \cr } } \right);a,b \in \{ 1,2,3,....100\} } \right\}$$ and let $${T_n} = \{ A \in S:{A^{n(n + 1)}} = I\} $$. Then the number of elements in $$\bigcap\limits_{n = 1}^{100} {{T_n}} $$ is ___________.

JEE Main 2022 (Online) 24th June Evening Shift
39
The number of elements in the set $$\left\{ {A = \left( {\matrix{ a & b \cr 0 & d \cr } } \right):a,b,d \in \{ - 1,0,1\} \,and\,{{(I - A)}^3} = I - {A^3}} \right\}$$, where I is 2 $$\times$$ 2 identity matrix, is :
JEE Main 2021 (Online) 31st August Evening Shift
40
If the system of linear equations

2x + y $$-$$ z = 3

x $$-$$ y $$-$$ z = $$\alpha$$

3x + 3y + $$\beta$$z = 3

has infinitely many solution, then $$\alpha$$ + $$\beta$$ $$-$$ $$\alpha$$$$\beta$$ is equal to _____________.
JEE Main 2021 (Online) 27th August Morning Shift
41
Let A be a 3 $$\times$$ 3 real matrix. If det(2Adj(2 Adj(Adj(2A)))) = 241, then the value of det(A2) equal __________.
JEE Main 2021 (Online) 26th August Evening Shift
42
If $$A = \left[ {\matrix{ 1 & 1 & 1 \cr 0 & 1 & 1 \cr 0 & 0 & 1 \cr } } \right]$$ and M = A + A2 + A3 + ....... + A20, then the sum of all the elements of the matrix M is equal to _____________.
JEE Main 2021 (Online) 27th July Evening Shift
43
For real numbers $$\alpha$$ and $$\beta$$, consider the following system of linear equations :

x + y $$-$$ z = 2, x + 2y + $$\alpha$$z = 1, 2x $$-$$ y + z = $$\beta$$. If the system has infinite solutions, then $$\alpha$$ + $$\beta$$ is equal to ______________.
JEE Main 2021 (Online) 27th July Morning Shift
44
Let $$f(x) = \left| {\matrix{ {{{\sin }^2}x} & { - 2 + {{\cos }^2}x} & {\cos 2x} \cr {2 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {1 + \cos 2x} \cr } } \right|,x \in [0,\pi ]$$. Then the maximum value of f(x) is equal to ______________.
JEE Main 2021 (Online) 27th July Morning Shift
45
Let $$M = \left\{ {A = \left( {\matrix{ a & b \cr c & d \cr } } \right):a,b,c,d \in \{ \pm 3, \pm 2, \pm 1,0\} } \right\}$$. Define f : M $$\to$$ Z, as f(A) = det(A), for all A$$\in$$M, where z is set of all integers. Then the number of A$$\in$$M such that f(A) = 15 is equal to _____________.
JEE Main 2021 (Online) 25th July Morning Shift
46
Let $$A = \left[ {\matrix{ 0 & 1 & 0 \cr 1 & 0 & 0 \cr 0 & 0 & 1 \cr } } \right]$$. Then the number of 3 $$\times$$ 3 matrices B with entries from the set {1, 2, 3, 4, 5} and satisfying AB = BA is ____________.
JEE Main 2021 (Online) 22th July Evening Shift
47
Let $$A = \{ {a_{ij}}\} $$ be a 3 $$\times$$ 3 matrix,

where $${a_{ij}} = \left\{ {\matrix{ {{{( - 1)}^{j - i}}} & {if} & {i < j,} \cr 2 & {if} & {i = j,} \cr {{{( - 1)}^{i + j}}} & {if} & {i > j} \cr } } \right.$$

then $$\det (3Adj(2{A^{ - 1}}))$$ is equal to _____________.
JEE Main 2021 (Online) 20th July Evening Shift
48
Let $$A = \left( {\matrix{ 1 & { - 1} & 0 \cr 0 & 1 & { - 1} \cr 0 & 0 & 1 \cr } } \right)$$ and B = 7A20 $$-$$ 20A7 + 2I, where I is an identity matrix of order 3 $$\times$$ 3. If B = [bij], then b13is equal to _____________.
JEE Main 2021 (Online) 20th July Morning Shift
49
Let a, b, c, d in arithmetic progression with common difference $$\lambda$$. If $$\left| {\matrix{ {x + a - c} & {x + b} & {x + a} \cr {x - 1} & {x + c} & {x + b} \cr {x - b + d} & {x + d} & {x + c} \cr } } \right| = 2$$, then value of $$\lambda$$2 is equal to ________________.
JEE Main 2021 (Online) 20th July Morning Shift
50
Let I be an identity matrix of order 2 $$\times$$ 2 and P = $$\left[ {\matrix{ 2 & { - 1} \cr 5 & { - 3} \cr } } \right]$$. Then the value of n$$\in$$N for which Pn = 5I $$-$$ 8P is equal to ____________.
JEE Main 2021 (Online) 18th March Evening Shift
51
Let $$A = \left[ {\matrix{ a & b \cr c & d \cr } } \right]$$ and $$B = \left[ {\matrix{ \alpha \cr \beta \cr } } \right] \ne \left[ {\matrix{ 0 \cr 0 \cr } } \right]$$ such that AB = B and a + d = 2021, then the value of ad $$-$$ bc is equal to ___________.
JEE Main 2021 (Online) 17th March Evening Shift
52
If 1, log10(4x $$-$$ 2) and log10$$\left( {{4^x} + {{18} \over 5}} \right)$$ are in arithmetic progression for a real number x, then the value of the determinant $$\left| {\matrix{ {2\left( {x - {1 \over 2}} \right)} & {x - 1} & {{x^2}} \cr 1 & 0 & x \cr x & 1 & 0 \cr } } \right|$$ is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
53
If $$A = \left[ {\matrix{ 2 & 3 \cr 0 & { - 1} \cr } } \right]$$, then the value of det(A4) + det(A10 $$-$$ (Adj(2A))10) is equal to _____________.
JEE Main 2021 (Online) 17th March Morning Shift
54
Let $$A = \left[ {\matrix{ {{a_1}} \cr {{a_2}} \cr } } \right]$$ and $$B = \left[ {\matrix{ {{b_1}} \cr {{b_2}} \cr } } \right]$$ be two 2 $$\times$$ 1 matrices with real entries such that A = XB, where

$$X = {1 \over {\sqrt 3 }}\left[ {\matrix{ 1 & { - 1} \cr 1 & k \cr } } \right]$$, and k$$\in$$R.

If $$a_1^2$$ + $$a_2^2$$ = $${2 \over 3}$$(b$$_1^2$$ + b$$_2^2$$) and (k2 + 1) b$$_2^2$$ $$\ne$$ $$-$$2b1b2, then the value of k is __________.
JEE Main 2021 (Online) 16th March Evening Shift
55
Let $$P = \left[ {\matrix{ { - 30} & {20} & {56} \cr {90} & {140} & {112} \cr {120} & {60} & {14} \cr } } \right]$$ and

$$A = \left[ {\matrix{ 2 & 7 & {{\omega ^2}} \cr { - 1} & { - \omega } & 1 \cr 0 & { - \omega } & { - \omega + 1} \cr } } \right]$$ where

$$\omega = {{ - 1 + i\sqrt 3 } \over 2}$$, and I3 be the identity matrix of order 3. If the
determinant of the matrix (P$$-$$1AP$$-$$I3)2 is $$\alpha$$$$\omega$$2, then the value of $$\alpha$$ is equal to ______________.
JEE Main 2021 (Online) 16th March Morning Shift
56
The total number of 3 $$\times$$ 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to _____________.
JEE Main 2021 (Online) 16th March Morning Shift
57
If the matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 2 & 0 \cr 3 & 0 & { - 1} \cr } } \right]$$ satisfies the equation

$${A^{20}} + \alpha {A^{19}} + \beta A = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 4 & 0 \cr 0 & 0 & 1 \cr } } \right]$$ for some real numbers $$\alpha$$ and $$\beta$$, then $$\beta$$ $$-$$ $$\alpha$$ is equal to ___________.
JEE Main 2021 (Online) 26th February Evening Shift
58
If $$A = \left[ {\matrix{ 0 & { - \tan \left( {{\theta \over 2}} \right)} \cr {\tan \left( {{\theta \over 2}} \right)} & 0 \cr } } \right]$$ and
$$({I_2} + A){({I_2} - A)^{ - 1}} = \left[ {\matrix{ a & { - b} \cr b & a \cr } } \right]$$, then $$13({a^2} + {b^2})$$ is equal to
JEE Main 2021 (Online) 25th February Morning Shift
59
Let $$A = \left[ {\matrix{ x & y & z \cr y & z & x \cr z & x & y \cr } } \right]$$, where x, y and z are real numbers such that x + y + z > 0 and xyz = 2. If $${A^2} = {I_3}$$, then the value of $${x^3} + {y^3} + {z^3}$$ is ____________.
JEE Main 2021 (Online) 25th February Morning Shift
60
If the system of equations

kx + y + 2z = 1

3x $$-$$ y $$-$$ 2z = 2

$$-$$2x $$-$$2y $$-$$4z = 3

has infinitely many solutions, then k is equal to __________.
JEE Main 2021 (Online) 25th February Morning Shift
61
Let P = $$\left[ {\matrix{ 3 & { - 1} & { - 2} \cr 2 & 0 & \alpha \cr 3 & { - 5} & 0 \cr } } \right]$$, where $$\alpha $$ $$ \in $$ R. Suppose Q = [ qij] is a matrix satisfying PQ = kl3 for some non-zero k $$ \in $$ R.
If q23 = $$ - {k \over 8}$$ and |Q| = $${{{k^2}} \over 2}$$, then a2 + k2 is equal to ______.
JEE Main 2021 (Online) 24th February Morning Shift
62
Let M be any 3 $$ \times $$ 3 matrix with entries from the set {0, 1, 2}. The maximum number of such matrices, for which the sum of diagonal elements of MTM is seven, is ________.
JEE Main 2021 (Online) 24th February Morning Shift
63
The sum of distinct values of $$\lambda $$ for which the system of equations

$$\left( {\lambda - 1} \right)x + \left( {3\lambda + 1} \right)y + 2\lambda z = 0$$
$$\left( {\lambda - 1} \right)x + \left( {4\lambda - 2} \right)y + \left( {\lambda + 3} \right)z = 0$$
$$2x + \left( {3\lambda + 1} \right)y + 3\left( {\lambda - 1} \right)z = 0$$

has non-zero solutions, is ________ .
JEE Main 2020 (Online) 6th September Evening Slot
64
If the system of equations
x - 2y + 3z = 9
2x + y + z = b
x - 7y + az = 24,
has infinitely many solutions, then a - b is equal to.........
JEE Main 2020 (Online) 4th September Morning Slot
65
Let S be the set of all integer solutions, (x, y, z), of the system of equations
x – 2y + 5z = 0
–2x + 4y + z = 0
–7x + 14y + 9z = 0
such that 15 $$ \le $$ x2 + y2 + z2 $$ \le $$ 150. Then, the number of elements in the set S is equal to ______ .
JEE Main 2020 (Online) 3rd September Evening Slot
66
Let A = $$\left[ {\matrix{ x & 1 \cr 1 & 0 \cr } } \right]$$, x $$ \in $$ R and A4 = [aij].
If a11 = 109, then a22 is equal to _______ .
JEE Main 2020 (Online) 3rd September Morning Slot
67
The number of all 3 × 3 matrices A, with enteries from the set {–1, 0, 1} such that the sum of the diagonal elements of AAT is 3, is
JEE Main 2020 (Online) 8th January Morning Slot
68
If the system of linear equations,
x + y + z = 6
x + 2y + 3z = 10
3x + 2y + $$\lambda $$z = $$\mu $$
has more than two solutions, then $$\mu $$ - $$\lambda $$2 is equal to ______.
JEE Main 2020 (Online) 7th January Evening Slot
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12