Let the function $ f(x) = \frac{x}{3} + \frac{3}{x} + 3, x \neq 0 $ be strictly increasing in $(-\infty, \alpha_1) \cup (\alpha_2, \infty)$ and strictly decreasing in $(\alpha_3, \alpha_4) \cup (\alpha_4, \alpha_5)$. Then $ \sum\limits_{i=1}^{5} \alpha_i^2 $ is equal to
Let f : ℝ $$ \to $$ ℝ be a polynomial function of degree four having extreme values at x = 4 and x = 5. If $ \lim\limits_{x \to 0} \frac{f(x)}{x^2} = 5 $, then f(2) is equal to :
Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^3+a x^2+b \log _{\mathrm{e}}|x|+1, x \neq 0$. Let $m$ and M respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\frac{1}{2}\right]$. Then $|\mathrm{M}+m|$ is equal to $\left(\right.$ Take $\left.\log _{\mathrm{e}} 2=0.7\right):$
Let $\mathrm{a}>0$. If the function $f(x)=6 x^3-45 \mathrm{a} x^2+108 \mathrm{a}^2 x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1 x_2=54$, then $\mathrm{a}+x_1+x_2$ is equal to :