If $ \frac{1}{1^4} + \frac{1}{2^4} + \frac{1}{3^4} + \ldots \infty= \frac{\pi^4}{90} $,
$\frac{1}{1^4} + \frac{1}{3^4} + \frac{1}{5^4} + \ldots \infty= \alpha $,
$ \frac{1}{2^4} + \frac{1}{4^4} + \frac{1}{6^4} + \ldots \infty= \beta $,
then $ \frac{\alpha}{\beta} $ is equal to :
Let $a_n$ be the $n^{th}$ term of an A.P. If $S_n = a_1 + a_2 + a_3 + \ldots + a_n = 700$, $a_6 = 7$ and $S_7 = 7$, then $a_n$ is equal to :
If the sum of the second, fourth and sixth terms of a G.P. of positive terms is 21 and the sum of its eighth, tenth and twelfth terms is 15309, then the sum of its first nine terms is :
Let $x_1, x_2, x_3, x_4$ be in a geometric progression. If $2,7,9,5$ are subtracted respectively from $x_1, x_2, x_3, x_4$, then the resulting numbers are in an arithmetic progression. Then the value of $\frac{1}{24}\left(x_1 x_2 x_3 x_4\right)$ is: