1
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\alpha>0$. If $\int\limits_0^\alpha \frac{x}{\sqrt{x+\alpha}-\sqrt{x}} \mathrm{~d} x=\frac{16+20 \sqrt{2}}{15}$, then $\alpha$ is equal to :
A
4
B
2
C
$2 \sqrt{2}$
D
$\sqrt{2}$
2
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\phi(x)=\frac{1}{\sqrt{x}} \int\limits_{\frac{\pi}{4}}^x\left(4 \sqrt{2} \sin t-3 \phi^{\prime}(t)\right) d t, x>0$,

then $\emptyset^{\prime}\left(\frac{\pi}{4}\right)$ is equal to :
A
$\frac{4}{6+\sqrt{\pi}}$
B
$\frac{4}{6-\sqrt{\pi}}$
C
$\frac{8}{\sqrt{\pi}}$
D
$\frac{8}{6+\sqrt{\pi}}$
3
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\alpha \in (0,1)$$ and $$\beta = {\log _e}(1 - \alpha )$$. Let $${P_n}(x) = x + {{{x^2}} \over 2} + {{{x^3}} \over 3}\, + \,...\, + \,{{{x^n}} \over n},x \in (0,1)$$. Then the integral $$\int\limits_0^\alpha {{{{t^{50}}} \over {1 - t}}dt} $$ is equal to

A
$$ - \left( {\beta + {P_{50}}\left( \alpha \right)} \right)$$
B
$$\beta - {P_{50}}(\alpha )$$
C
$${P_{50}}(\alpha ) - \beta $$
D
$$\beta + {P_{50}} - (\alpha )$$
4
JEE Main 2023 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\int_\limits{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{(2+3 \sin x)}{\sin x(1+\cos x)} d x$$ is equal to :

A
$$\frac{10}{3}-\sqrt{3}+\log _{e} \sqrt{3}$$
B
$$\frac{7}{2}-\sqrt{3}-\log _{e} \sqrt{3}$$
C
$$\frac{10}{3}-\sqrt{3}-\log _{e} \sqrt{3}$$
D
$$-2+3\sqrt{3}+\log _{e} \sqrt{3}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12