Trigonometric Ratio and Identites · Mathematics · JEE Main
MCQ (Single Correct Answer)
If $\sin x + \sin^2 x = 1$, $x \in \left(0, \frac{\pi}{2}\right)$, then
$(\cos^{12} x + \tan^{12} x) + 3(\cos^{10} x + \cos^8 x + \tan^8 x) + (\cos^6 x + \tan^6 x)$ is equal to:
Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :
The value of $\left(\sin 70^{\circ}\right)\left(\cot 10^{\circ} \cot 70^{\circ}-1\right)$ is
If the value of $$\frac{3 \cos 36^{\circ}+5 \sin 18^{\circ}}{5 \cos 36^{\circ}-3 \sin 18^{\circ}}$$ is $$\frac{a \sqrt{5}-b}{c}$$, where $$a, b, c$$ are natural numbers and $$\operatorname{gcd}(a, c)=1$$, then $$a+b+c$$ is equal to :
If $$\sin x=-\frac{3}{5}$$, where $$\pi< x <\frac{3 \pi}{2}$$, then $$80\left(\tan ^2 x-\cos x\right)$$ is equal to
Suppose $$\theta \in\left[0, \frac{\pi}{4}\right]$$ is a solution of $$4 \cos \theta-3 \sin \theta=1$$. Then $$\cos \theta$$ is equal to :
$\tan \mathrm{C}=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<\mathrm{A}, \mathrm{B}, \mathrm{C}<\frac{\pi}{2}$, then $\mathrm{A}+\mathrm{B}$ is equal to :
The number of solutions, of the equation $$e^{\sin x}-2 e^{-\sin x}=2$$, is :
For $$\alpha, \beta \in(0, \pi / 2)$$, let $$3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$$ and a real number $$k$$ be such that $$\tan \alpha=k \tan \beta$$. Then, the value of $$k$$ is equal to
$$96\cos {\pi \over {33}}\cos {{2\pi } \over {33}}\cos {{4\pi } \over {33}}\cos {{8\pi } \over {33}}\cos {{16\pi } \over {33}}$$ is equal to :
The value of $$36\left(4 \cos ^{2} 9^{\circ}-1\right)\left(4 \cos ^{2} 27^{\circ}-1\right)\left(4 \cos ^{2} 81^{\circ}-1\right)\left(4 \cos ^{2} 243^{\circ}-1\right)$$ is :
If $$\tan 15^\circ + {1 \over {\tan 75^\circ }} + {1 \over {\tan 105^\circ }} + \tan 195^\circ = 2a$$, then the value of $$\left( {a + {1 \over a}} \right)$$ is :
The set of all values of $$\lambda$$ for which the equation $${\cos ^2}2x - 2{\sin ^4}x - 2{\cos ^2}x = \lambda $$ has a real solution $$x$$, is :
Let $$f(\theta ) = 3\left( {{{\sin }^4}\left( {{{3\pi } \over 2} - \theta } \right) + {{\sin }^4}(3\pi + \theta )} \right) - 2(1 - {\sin ^2}2\theta )$$ and $$S = \left\{ {\theta \in [0,\pi ]:f'(\theta ) = - {{\sqrt 3 } \over 2}} \right\}$$. If $$4\beta = \sum\limits_{\theta \in S} \theta $$, then $$f(\beta )$$ is equal to
$$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$$ is equal to :
If cot$$\alpha$$ = 1 and sec$$\beta$$ = $$ - {5 \over 3}$$, where $$\pi < \alpha < {{3\pi } \over 2}$$ and $${\pi \over 2} < \beta < \pi $$, then the value of $$\tan (\alpha + \beta )$$ and the quadrant in which $$\alpha$$ + $$\beta$$ lies, respectively are :
$$\alpha = \sin 36^\circ $$ is a root of which of the following equation?
The value of $$\cos \left( {{{2\pi } \over 7}} \right) + \cos \left( {{{4\pi } \over 7}} \right) + \cos \left( {{{6\pi } \over 7}} \right)$$ is equal to :
$$16\sin (20^\circ )\sin (40^\circ )\sin (80^\circ )$$ is equal to :
The value of 2sin (12$$^\circ$$) $$-$$ sin (72$$^\circ$$) is :
$$2\sin \left( {{\pi \over 8}} \right)\sin \left( {{{2\pi } \over 8}} \right)\sin \left( {{{3\pi } \over 8}} \right)\sin \left( {{{5\pi } \over 8}} \right)\sin \left( {{{6\pi } \over 8}} \right)\sin \left( {{{7\pi } \over 8}} \right)$$ is :
27sec6$$\alpha$$ + 8cosec6$$\alpha$$ is equal to :
$${{2\sin x} \over {\sin x + \sqrt 3 \cos x}}\left( {0 < x < {\pi \over 2}} \right)$$ is :
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
for 0 < $$\theta $$ < $${\pi \over 4}$$, then :
$${\cos ^3}\left( {{\pi \over 8}} \right)$$$${\cos}\left( {{3\pi \over 8}} \right)$$+$${\sin ^3}\left( {{\pi \over 8}} \right)$$$${\sin}\left( {{3\pi \over 8}} \right)$$
is :
$$3{(\cos \theta - \sin \theta )^4}$$$$ + 6{(\sin \theta + \cos \theta )^2} + 4{\sin ^6}\theta $$
equals :
then the value of $$\cos 4x$$ is :
4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x, x $$ \in $$ R, then M $$-$$ m is equal to :
Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,\,$$ equals :
Then $$tan\,2\alpha $$ =
A: $$\cos \alpha + \cos \beta + \cos \gamma = 0$$
B: $$\sin \alpha + \sin \beta + \sin \gamma = 0$$
If $$\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right) = - {3 \over 2},$$ then:
then the difference between the maximum and minimum values of $${u^2}$$ is given by :
If $$sin{\mkern 1mu} \alpha + \sin \beta = - {{21} \over {65}}$$ and $$\cos \alpha + \cos \beta = - {{27} \over {65}}$$ then the value of $$\cos {{\alpha - \beta } \over 2}$$ :
Numerical
The value of $$\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$$ is __________.
If $${\sin ^2}(10^\circ )\sin (20^\circ )\sin (40^\circ )\sin (50^\circ )\sin (70^\circ ) = \alpha - {1 \over {16}}\sin (10^\circ )$$, then $$16 + {\alpha ^{ - 1}}$$ is equal to __________.
$$\alpha ,\beta \in \left( {0,{\pi \over 2}} \right)$$ then tan($$\alpha $$ + 2$$\beta $$) is equal to _____.