Trigonometric Ratio and Identites · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

1

If $\sin x + \sin^2 x = 1$, $x \in \left(0, \frac{\pi}{2}\right)$, then

$(\cos^{12} x + \tan^{12} x) + 3(\cos^{10} x + \cos^8 x + \tan^8 x) + (\cos^6 x + \tan^6 x)$ is equal to:

JEE Main 2025 (Online) 29th January Evening Shift
2
If $\sum\limits_{r=1}^{13}\left\{\frac{1}{\sin \left(\frac{\pi}{4}+(r-1) \frac{\pi}{6}\right) \sin \left(\frac{\pi}{4}+\frac{r \pi}{6}\right)}\right\}=a \sqrt{3}+b, a, b \in Z$, then $a^2+b^2$ is equal to :
JEE Main 2025 (Online) 28th January Evening Shift
3

Let the range of the function $f(x)=6+16 \cos x \cdot \cos \left(\frac{\pi}{3}-x\right) \cdot \cos \left(\frac{\pi}{3}+x\right) \cdot \sin 3 x \cdot \cos 6 x, x \in \mathbf{R}$ be $[\alpha, \beta]$. Then the distance of the point $(\alpha, \beta)$ from the line $3 x+4 y+12=0$ is :

JEE Main 2025 (Online) 23rd January Evening Shift
4

The value of $\left(\sin 70^{\circ}\right)\left(\cot 10^{\circ} \cot 70^{\circ}-1\right)$ is

JEE Main 2025 (Online) 23rd January Morning Shift
5

If the value of $$\frac{3 \cos 36^{\circ}+5 \sin 18^{\circ}}{5 \cos 36^{\circ}-3 \sin 18^{\circ}}$$ is $$\frac{a \sqrt{5}-b}{c}$$, where $$a, b, c$$ are natural numbers and $$\operatorname{gcd}(a, c)=1$$, then $$a+b+c$$ is equal to :

JEE Main 2024 (Online) 8th April Evening Shift
6

If $$\sin x=-\frac{3}{5}$$, where $$\pi< x <\frac{3 \pi}{2}$$, then $$80\left(\tan ^2 x-\cos x\right)$$ is equal to

JEE Main 2024 (Online) 8th April Morning Shift
7

Suppose $$\theta \in\left[0, \frac{\pi}{4}\right]$$ is a solution of $$4 \cos \theta-3 \sin \theta=1$$. Then $$\cos \theta$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
8
If $\tan \mathrm{A}=\frac{1}{\sqrt{x\left(x^2+x+1\right)}}, \tan \mathrm{B}=\frac{\sqrt{x}}{\sqrt{x^2+x+1}}$ and

$\tan \mathrm{C}=\left(x^{-3}+x^{-2}+x^{-1}\right)^{1 / 2}, 0<\mathrm{A}, \mathrm{B}, \mathrm{C}<\frac{\pi}{2}$, then $\mathrm{A}+\mathrm{B}$ is equal to :
JEE Main 2024 (Online) 1st February Morning Shift
9

The number of solutions, of the equation $$e^{\sin x}-2 e^{-\sin x}=2$$, is :

JEE Main 2024 (Online) 31st January Evening Shift
10

For $$\alpha, \beta \in(0, \pi / 2)$$, let $$3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$$ and a real number $$k$$ be such that $$\tan \alpha=k \tan \beta$$. Then, the value of $$k$$ is equal to

JEE Main 2024 (Online) 30th January Evening Shift
11

$$96\cos {\pi \over {33}}\cos {{2\pi } \over {33}}\cos {{4\pi } \over {33}}\cos {{8\pi } \over {33}}\cos {{16\pi } \over {33}}$$ is equal to :

JEE Main 2023 (Online) 10th April Morning Shift
12

The value of $$36\left(4 \cos ^{2} 9^{\circ}-1\right)\left(4 \cos ^{2} 27^{\circ}-1\right)\left(4 \cos ^{2} 81^{\circ}-1\right)\left(4 \cos ^{2} 243^{\circ}-1\right)$$ is :

JEE Main 2023 (Online) 8th April Evening Shift
13

If $$\tan 15^\circ + {1 \over {\tan 75^\circ }} + {1 \over {\tan 105^\circ }} + \tan 195^\circ = 2a$$, then the value of $$\left( {a + {1 \over a}} \right)$$ is :

JEE Main 2023 (Online) 30th January Morning Shift
14

The set of all values of $$\lambda$$ for which the equation $${\cos ^2}2x - 2{\sin ^4}x - 2{\cos ^2}x = \lambda $$ has a real solution $$x$$, is :

JEE Main 2023 (Online) 29th January Evening Shift
15

Let $$f(\theta ) = 3\left( {{{\sin }^4}\left( {{{3\pi } \over 2} - \theta } \right) + {{\sin }^4}(3\pi + \theta )} \right) - 2(1 - {\sin ^2}2\theta )$$ and $$S = \left\{ {\theta \in [0,\pi ]:f'(\theta ) = - {{\sqrt 3 } \over 2}} \right\}$$. If $$4\beta = \sum\limits_{\theta \in S} \theta $$, then $$f(\beta )$$ is equal to

JEE Main 2023 (Online) 29th January Morning Shift
16

$$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$$ is equal to :

JEE Main 2022 (Online) 25th July Evening Shift
17

If cot$$\alpha$$ = 1 and sec$$\beta$$ = $$ - {5 \over 3}$$, where $$\pi < \alpha < {{3\pi } \over 2}$$ and $${\pi \over 2} < \beta < \pi $$, then the value of $$\tan (\alpha + \beta )$$ and the quadrant in which $$\alpha$$ + $$\beta$$ lies, respectively are :

JEE Main 2022 (Online) 28th June Evening Shift
18

$$\alpha = \sin 36^\circ $$ is a root of which of the following equation?

JEE Main 2022 (Online) 27th June Evening Shift
19

The value of $$\cos \left( {{{2\pi } \over 7}} \right) + \cos \left( {{{4\pi } \over 7}} \right) + \cos \left( {{{6\pi } \over 7}} \right)$$ is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
20

$$16\sin (20^\circ )\sin (40^\circ )\sin (80^\circ )$$ is equal to :

JEE Main 2022 (Online) 26th June Evening Shift
21

The value of 2sin (12$$^\circ$$) $$-$$ sin (72$$^\circ$$) is :

JEE Main 2022 (Online) 25th June Evening Shift
22
The value of

$$2\sin \left( {{\pi \over 8}} \right)\sin \left( {{{2\pi } \over 8}} \right)\sin \left( {{{3\pi } \over 8}} \right)\sin \left( {{{5\pi } \over 8}} \right)\sin \left( {{{6\pi } \over 8}} \right)\sin \left( {{{7\pi } \over 8}} \right)$$ is :
JEE Main 2021 (Online) 26th August Evening Shift
23
If $$\tan \left( {{\pi \over 9}} \right),x,\tan \left( {{{7\pi } \over {18}}} \right)$$ are in arithmetic progression and $$\tan \left( {{\pi \over 9}} \right),y,\tan \left( {{{5\pi } \over {18}}} \right)$$ are also in arithmetic progression, then $$|x - 2y|$$ is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
24
If $$\sin \theta + \cos \theta = {1 \over 2}$$, then 16(sin(2$$\theta$$) + cos(4$$\theta$$) + sin(6$$\theta$$)) is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
25
The value of $$\cot {\pi \over {24}}$$ is :
JEE Main 2021 (Online) 25th July Evening Shift
26
If 15sin4$$\alpha$$ + 10cos4$$\alpha$$ = 6, for some $$\alpha$$$$\in$$R, then the value of

27sec6$$\alpha$$ + 8cosec6$$\alpha$$ is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
27
If for x $$\in$$ $$\left( {0,{\pi \over 2}} \right)$$, log10sinx + log10cosx = $$-$$1 and log10(sinx + cosx) = $${1 \over 2}$$(log10 n $$-$$ 1), n > 0, then the value of n is equal to :
JEE Main 2021 (Online) 16th March Morning Shift
28
If 0 < x, y < $$\pi$$ and cosx + cosy $$-$$ cos(x + y) = $${3 \over 2}$$, then sinx + cosy is equal to :
JEE Main 2021 (Online) 25th February Evening Shift
29
If $${e^{\left( {{{\cos }^2}x + {{\cos }^4}x + {{\cos }^6}x + ...\infty } \right){{\log }_e}2}}$$ satisfies the equation t2 - 9t + 8 = 0, then the value of
$${{2\sin x} \over {\sin x + \sqrt 3 \cos x}}\left( {0 < x < {\pi \over 2}} \right)$$ is :
JEE Main 2021 (Online) 24th February Morning Shift
30
If L = sin2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$ and
M = cos2$$\left( {{\pi \over {16}}} \right)$$ - sin2$$\left( {{\pi \over {8}}} \right)$$, then :
JEE Main 2020 (Online) 5th September Evening Slot
31
If the equation cos4 $$\theta $$ + sin4 $$\theta $$ + $$\lambda $$ = 0 has real solutions for $$\theta $$, then $$\lambda $$ lies in the interval :
JEE Main 2020 (Online) 2nd September Evening Slot
32
If $$x = \sum\limits_{n = 0}^\infty {{{\left( { - 1} \right)}^n}{{\tan }^{2n}}\theta } $$ and $$y = \sum\limits_{n = 0}^\infty {{{\cos }^{2n}}\theta } $$

for 0 < $$\theta $$ < $${\pi \over 4}$$, then :
JEE Main 2020 (Online) 9th January Evening Slot
33
The value of
$${\cos ^3}\left( {{\pi \over 8}} \right)$$$${\cos}\left( {{3\pi \over 8}} \right)$$+$${\sin ^3}\left( {{\pi \over 8}} \right)$$$${\sin}\left( {{3\pi \over 8}} \right)$$
is :
JEE Main 2020 (Online) 9th January Morning Slot
34
The equation y = sinx sin (x + 2) – sin2 (x + 1) represents a straight line lying in :
JEE Main 2019 (Online) 12th April Morning Slot
35
The value of sin 10º sin30º sin50º sin70º is :-
JEE Main 2019 (Online) 9th April Evening Slot
36
The value of cos210° – cos10°cos50° + cos250° is
JEE Main 2019 (Online) 9th April Morning Slot
37
If cos($$\alpha $$ + $$\beta $$) = 3/5 ,sin ( $$\alpha $$ - $$\beta $$) = 5/13 and 0 < $$\alpha , \beta$$ < $$\pi \over 4$$, then tan(2$$\alpha $$) is equal to :
JEE Main 2019 (Online) 8th April Morning Slot
38
The maximum value of 3cos$$\theta $$ + 5sin $$\left( {\theta - {\pi \over 6}} \right)$$ for any real value of $$\theta $$ is :
JEE Main 2019 (Online) 12th January Morning Slot
39
The value of $$\cos {\pi \over {{2^2}}}.\cos {\pi \over {{2^3}}}\,.....\cos {\pi \over {{2^{10}}}}.\sin {\pi \over {{2^{10}}}}$$ is -
JEE Main 2019 (Online) 10th January Evening Slot
40
For any $$\theta \in \left( {{\pi \over 4},{\pi \over 2}} \right)$$, the expression

$$3{(\cos \theta - \sin \theta )^4}$$$$ + 6{(\sin \theta + \cos \theta )^2} + 4{\sin ^6}\theta $$

equals :
JEE Main 2019 (Online) 9th January Morning Slot
41
If $$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9$$,

then the value of $$\cos 4x$$ is :
JEE Main 2017 (Offline)
42
If  m and M are the minimum and the maximum values of

4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x, x $$ \in $$ R, then M $$-$$ m is equal to :
JEE Main 2016 (Online) 9th April Morning Slot
43
Let $$f_k\left( x \right) = {1 \over k}\left( {{{\sin }^k}x + {{\cos }^k}x} \right)$$ where $$x \in R$$ and $$k \ge \,1.$$
Then $${f_4}\left( x \right) - {f_6}\left( x \right)\,\,$$ equals :
JEE Main 2014 (Offline)
44
The expression $${{\tan {\rm A}} \over {1 - \cot {\rm A}}} + {{\cot {\rm A}} \over {1 - \tan {\rm A}}}$$ can be written as:
JEE Main 2013 (Offline)
45
If $$A = {\sin ^2}x + {\cos ^4}x,$$ then for all real $$x$$:
AIEEE 2011
46
Let $$\cos \left( {\alpha + \beta } \right) = {4 \over 5}$$ and $$\sin \,\,\,\left( {\alpha - \beta } \right) = {5 \over {13}},$$ where $$0 \le \alpha ,\,\beta \le {\pi \over 4}.$$
Then $$tan\,2\alpha $$ =
AIEEE 2010
47
Let A and B denote the statements

A: $$\cos \alpha + \cos \beta + \cos \gamma = 0$$

B: $$\sin \alpha + \sin \beta + \sin \gamma = 0$$

If $$\cos \left( {\beta - \gamma } \right) + \cos \left( {\gamma - \alpha } \right) + \cos \left( {\alpha - \beta } \right) = - {3 \over 2},$$ then:

AIEEE 2009
48
If $$0 < x < \pi $$ and $$\cos x + \sin x = {1 \over 2},$$ then $$\tan x$$ is :
AIEEE 2006
49
If $$u = \sqrt {{a^2}{{\cos }^2}\theta + {b^2}{{\sin }^2}\theta } + \sqrt {{a^2}{{\sin }^2}\theta + {b^2}{{\cos }^2}\theta } $$

then the difference between the maximum and minimum values of $${u^2}$$ is given by :
AIEEE 2004
50
Let $$\alpha ,\,\beta $$ be such that $$\pi < \alpha - \beta < 3\pi $$.
If $$sin{\mkern 1mu} \alpha + \sin \beta = - {{21} \over {65}}$$ and $$\cos \alpha + \cos \beta = - {{27} \over {65}}$$ then the value of $$\cos {{\alpha - \beta } \over 2}$$ :
AIEEE 2004

Numerical

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12