1
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
The value of integral $$\int_{{\pi \over 4}}^{{{3\pi } \over 4}} {{x \over {1 + \sin x}}dx}$$ is :
A
$$\pi \sqrt 2$$
B
$$\pi \left( {\sqrt 2 - 1} \right)$$
C
$${\pi \over 2}\left( {\sqrt 2 + 1} \right)$$
D
$$2\pi \left( {\sqrt 2 - 1} \right)$$
2
JEE Main 2018 (Online) 15th April Evening Slot
+4
-1
If   $${I_1} = \int_0^1 {{e^{ - x}}} {\cos ^2}x{\mkern 1mu} dx;$$

$${I_2} = \int_0^1 {{e^{ - {x^2}}}} {\cos ^2}x{\mkern 1mu} dx$$  and

$${I_3} = \int_0^1 {{e^{ - {x^3}}}} dx;$$ then
A
I2  >  I3  >  I1
B
I2  >  I1  >  I3
C
I3  >  I2  >  I1
D
I3  >  I1  >  I2
3
JEE Main 2018 (Online) 15th April Morning Slot
+4
-1
The value of the integral

$$\int\limits_{ - {\pi \over 2}}^{{\pi \over 2}} {{{\sin }^4}} x\left( {1 + \log \left( {{{2 + \sin x} \over {2 - \sin x}}} \right)} \right)dx$$ is :
A
0
B
$${3 \over 4}$$
C
$${3 \over 8}$$ $$\pi$$
D
$${3 \over 16}$$ $$\pi$$
4
JEE Main 2017 (Online) 9th April Morning Slot
+4
-1
Out of Syllabus
If    $$\mathop {\lim }\limits_{n \to \infty } \,\,{{{1^a} + {2^a} + ...... + {n^a}} \over {{{(n + 1)}^{a - 1}}\left[ {\left( {na + 1} \right) + \left( {na + 2} \right) + ..... + \left( {na + n} \right)} \right]}} = {1 \over {60}}$$

for some positive real number a, then a is equal to :
A
7
B
8
C
$${{15} \over 2}$$
D
$${{17} \over 2}$$
EXAM MAP
Medical
NEET