Trigonometric Equations · Mathematics · JEE Main
MCQ (Single Correct Answer)
The sum of all values of $\theta \in[0,2 \pi]$ satisfying $2 \sin ^2 \theta=\cos 2 \theta$ and $2 \cos ^2 \theta=3 \sin \theta$ is
Let $$|\cos \theta \cos (60-\theta) \cos (60+\theta)| \leq \frac{1}{8}, \theta \epsilon[0,2 \pi]$$. Then, the sum of all $$\theta \in[0,2 \pi]$$, where $$\cos 3 \theta$$ attains its maximum value, is :
If $$2 \sin ^3 x+\sin 2 x \cos x+4 \sin x-4=0$$ has exactly 3 solutions in the interval $$\left[0, \frac{\mathrm{n} \pi}{2}\right], \mathrm{n} \in \mathrm{N}$$, then the roots of the equation $$x^2+\mathrm{n} x+(\mathrm{n}-3)=0$$ belong to :
The sum of the solutions $$x \in \mathbb{R}$$ of the equation $$\frac{3 \cos 2 x+\cos ^3 2 x}{\cos ^6 x-\sin ^6 x}=x^3-x^2+6$$ is
If $$\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$$ is the solution of $$4 \cos \theta+5 \sin \theta=1$$, then the value of $$\tan \alpha$$ is
If $$2 \tan ^2 \theta-5 \sec \theta=1$$ has exactly 7 solutions in the interval $$\left[0, \frac{n \pi}{2}\right]$$, for the least value of $$n \in \mathbf{N}$$, then $$\sum_\limits{k=1}^n \frac{k}{2^k}$$ is equal to:
The number of elements in the set
$$S=\left\{\theta \in[0,2 \pi]: 3 \cos ^{4} \theta-5 \cos ^{2} \theta-2 \sin ^{6} \theta+2=0\right\}$$ is :
Let $$S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^{2} x}+9^{\tan ^{2} x}=10\right\}$$ and $$\beta=\sum_\limits{x \in S} \tan ^{2}\left(\frac{x}{3}\right)$$, then $$\frac{1}{6}(\beta-14)^{2}$$ is equal to :
The number of elements in the set $$S=\left\{x \in \mathbb{R}: 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$$ is :
Let $$S=\left\{\theta \in\left(0, \frac{\pi}{2}\right): \sum\limits_{m=1}^{9} \sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}\right\}$$. Then
Let $$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\} .$$ Then $$n(s) + \sum\limits_{\theta \in S}^{} {\left( {\sec \left( {{\pi \over 4} + 2\theta } \right)\cos ec\left( {{\pi \over 4} + 2\theta } \right)} \right)} $$ is equal to:
The number of solutions of $$|\cos x|=\sin x$$, such that $$-4 \pi \leq x \leq 4 \pi$$ is :
Let for some real numbers $$\alpha$$ and $$\beta$$, $$a = \alpha - i\beta $$. If the system of equations $$4ix + (1 + i)y = 0$$ and $$8\left( {\cos {{2\pi } \over 3} + i\sin {{2\pi } \over 3}} \right)x + \overline a y = 0$$ has more than one solution, then $${\alpha \over \beta }$$ is equal to
The number of solutions of the equation
$$\cos \left( {x + {\pi \over 3}} \right)\cos \left( {{\pi \over 3} - x} \right) = {1 \over 4}{\cos ^2}2x$$, $$x \in [ - 3\pi ,3\pi ]$$ is :
Let $$S = \left\{ {\theta \in [ - \pi ,\pi ] - \left\{ { \pm \,\,{\pi \over 2}} \right\}:\sin \theta \tan \theta + \tan \theta = \sin 2\theta } \right\}$$.
If $$T = \sum\limits_{\theta \, \in \,S}^{} {\cos 2\theta } $$, then T + n(S) is equal to :
$$2\cos x\left( {4\sin \left( {{\pi \over 4} + x} \right)\sin \left( {{\pi \over 4} - x} \right) - 1} \right) = 1,x \in [0,\pi ]$$ and S is the sum of all these solutions, then the ordered pair (n, S) is :
$${{\cos x} \over {1 + \sin x}} = \left| {\tan 2x} \right|$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right) - \left\{ {{\pi \over 4}, - {\pi \over 4}} \right\}$$ is :
1 + sin4 x = cos23x, $$x \in \left[ { - {{5\pi } \over 2},{{5\pi } \over 2}} \right]$$ is :
sin2 2$$\theta $$ + cos4 2$$\theta $$ = $${3 \over 4}$$ is -
$$8\cos x.\left( {\cos \left( {{\pi \over 6} + x} \right).\cos \left( {{\pi \over 6} - x} \right) - {1 \over 2}} \right) = 1$$
in [0, $$\pi $$] is k$$\pi $$, then k is equal to
$$\left| {\sqrt {2{{\sin }^4}x + 18{{\cos }^2}x} - \sqrt {2{{\cos }^4}x + 18{{\sin }^2}x} } \right| = 1$$ is :
Numerical
The number of solutions of $$\sin ^2 x+\left(2+2 x-x^2\right) \sin x-3(x-1)^2=0$$, where $$-\pi \leq x \leq \pi$$, is ________.
Let $$S=\left\{\sin ^2 2 \theta:\left(\sin ^4 \theta+\cos ^4 \theta\right) x^2+(\sin 2 \theta) x+\left(\sin ^6 \theta+\cos ^6 \theta\right)=0\right.$$ has real roots $$\}$$. If $$\alpha$$ and $$\beta$$ be the smallest and largest elements of the set $$S$$, respectively, then $$3\left((\alpha-2)^2+(\beta-1)^2\right)$$ equals __________.
If m and n respectively are the numbers of positive and negative values of $$\theta$$ in the interval $$[-\pi,\pi]$$ that satisfy the equation $$\cos 2\theta \cos {\theta \over 2} = \cos 3\theta \cos {{9\theta } \over 2}$$, then mn is equal to ____________.
Let $$\mathrm{S = \{ \theta \in [0,2\pi ):\tan (\pi \cos \theta ) + \tan (\pi \sin \theta ) = 0\}}$$. Then $$\sum\limits_{\theta \in S} {{{\sin }^2}\left( {\theta + {\pi \over 4}} \right)} $$ is equal to __________.
Let $$S=\left\{\theta \in(0,2 \pi): 7 \cos ^{2} \theta-3 \sin ^{2} \theta-2 \cos ^{2} 2 \theta=2\right\}$$. Then, the sum of roots of all the equations $$x^{2}-2\left(\tan ^{2} \theta+\cot ^{2} \theta\right) x+6 \sin ^{2} \theta=0, \theta \in S$$, is __________.
Let $$S=\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$$. Then the number of elements in the set $$\mid A=\{\theta \in S: \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$$ is __________.
If the sum of solutions of the system of equations $$2 \sin ^{2} \theta-\cos 2 \theta=0$$ and $$2 \cos ^{2} \theta+3 \sin \theta=0$$ in the interval $$[0,2 \pi]$$ is $$k \pi$$, then $$k$$ is equal to __________.
Let $${S_1} = \{ x \in [0,12\pi ]:{\sin ^5}x + {\cos ^5}x = 1\} $$
and $${S_2} = \{ x \in [0,8\pi ]:{\sin ^7}x + {\cos ^7}x = 1\} $$
Then $$n({S_1}) - n({S_2})$$ is equal to ______________.
The number of solutions of the equation $$\sin x = {\cos ^2}x$$ in the interval (0, 10) is _________.
The number of elements in the set $$S = \{ \theta \in [ - 4\pi ,4\pi ]:3{\cos ^2}2\theta + 6\cos 2\theta - 10{\cos ^2}\theta + 5 = 0\} $$ is __________.
The number of solutions of the equation
$$2\theta - {\cos ^2}\theta + \sqrt 2 = 0$$ in R is equal to ___________.
The number of values of x in the interval $$\left( {{\pi \over 4},{{7\pi } \over 4}} \right)$$ for which
$$14\cos e{c^2}x - 2{\sin ^2}x = 21 - 4{\cos ^2}x$$ holds, is ____________.
$$|\cot x| = \cot x + {1 \over {\sin x}}$$ in the interval [ 0, 2$$\pi$$ ] is