Differential Equations · Mathematics · JEE Main
MCQ (Single Correct Answer)
If for the solution curve $y=f(x)$ of the differential equation $\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^2}$, $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10}$, then $f\left(\frac{\pi}{4}\right)$ is equal to:
Let y = y(x) be the solution of the differential equation :
$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :
Let for some function $\mathrm{y}=f(x), \int_0^x t f(t) d t=x^2 f(x), x>0$ and $f(2)=3$. Then $f(6)$ is equal to
Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(x y-5 x^2 \sqrt{1+x^2}\right) d x+\left(1+x^2\right) d y=0, y(0)=0$. Then $y(\sqrt{3})$ is equal to
Let $x=x(y)$ be the solution of the differential equation $y=\left(x-y \frac{\mathrm{~d} x}{\mathrm{~d} y}\right) \sin \left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos (x(2))$ is equal to :
Let a curve $y=f(x)$ pass through the points $(0,5)$ and $\left(\log _e 2, k\right)$. If the curve satisfies the differential equation $2(3+y) e^{2 x} d x-\left(7+e^{2 x}\right) d y=0$, then $k$ is equal to
If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :
Let $x=x(y)$ be the solution of the differential equation $y^2 \mathrm{~d} x+\left(x-\frac{1}{y}\right) \mathrm{d} y=0$. If $x(1)=1$, then $x\left(\frac{1}{2}\right)$ is :
Let $f(x)$ be a real differentiable function such that $f(0)=1$ and $f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$ for all $x, y \in \mathbf{R}$. Then $\sum_\limits{n=1}^{100} \log _e f(n)$ is equal to :
Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=4 \mathrm{a}$ and $f$ satisfies $f^{\prime \prime}(x)-3 \mathrm{a} f^{\prime}(x)-f(x)=0, \mathrm{a}>0$, then the area of the region $\mathrm{R}=\{(x, y) \mid 0 \leq y \leq f(a x), 0 \leq x \leq 2\}$ is :
Let $$\int_\limits0^x \sqrt{1-\left(y^{\prime}(t)\right)^2} d t=\int_0^x y(t) d t, 0 \leq x \leq 3, y \geq 0, y(0)=0$$. Then at $$x=2, y^{\prime \prime}+y+1$$ is equal to
The solution of the differential equation $$(x^2+y^2) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$$, is :
The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :
Let $$y=y(x)$$ be the solution curve of the differential equation $$\sec y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x \sin y=x^3 \cos y, y(1)=0$$. Then $$y(\sqrt{3})$$ is equal to:
Let $$f(x)$$ be a positive function such that the area bounded by $$y=f(x), y=0$$ from $$x=0$$ to $$x=a>0$$ is $$e^{-a}+4 a^2+a-1$$. Then the differential equation, whose general solution is $$y=c_1 f(x)+c_2$$, where $$c_1$$ and $$c_2$$ are arbitrary constants, is
Let $$y=y(x)$$ be the solution of the differential equation $$(1+y^2) e^{\tan x} d x+\cos ^2 x(1+e^{2 \tan x}) d y=0, y(0)=1$$. Then $$y\left(\frac{\pi}{4}\right)$$ is equal to
Suppose the solution of the differential equation $$\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)}$$ represents a circle passing through origin. Then the radius of this circle is :
Let $$y=y(x)$$ be the solution of the differential equation $$\left(2 x \log _e x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _e x, x>0$$ and $$y\left(e^{-1}\right)=0$$. Then, $$y(e)$$ is equal to
Let $$y=y(x)$$ be the solution of the differential equation $$\left(1+x^2\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$$, $$y(1)=0$$. Then $$y(0)$$ is
The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :
If $$y=y(x)$$ is the solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\sin (2 x), y(0)=\frac{3}{4}$$, then $$y\left(\frac{\pi}{8}\right)$$ is equal to :
Let $$y=y(x)$$ be the solution of the differential equation $$(x^2+4)^2 d y+(2 x^3 y+8 x y-2) d x=0$$. If $$y(0)=0$$, then $$y(2)$$ is equal to
If the solution $$y=y(x)$$ of the differential equation $$(x^4+2 x^3+3 x^2+2 x+2) \mathrm{d} y-(2 x^2+2 x+3) \mathrm{d} x=0$$ satisfies $$y(-1)=-\frac{\pi}{4}$$, then $$y(0)$$ is equal to :
$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x(x+y)^3-x(x+y)-1, y(0)=1$.
Then, $\left(\frac{1}{\sqrt{2}}+y\left(\frac{1}{\sqrt{2}}\right)\right)^2$ equals :
The temperature $$T(t)$$ of a body at time $$t=0$$ is $$160^{\circ} \mathrm{F}$$ and it decreases continuously as per the differential equation $$\frac{d T}{d t}=-K(T-80)$$, where $$K$$ is a positive constant. If $$T(15)=120^{\circ} \mathrm{F}$$, then $$T(45)$$ is equal to
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right)$$ satisfying the condition $$y\left(\frac{\pi}{4}\right)=2$$. Then, $$y\left(\frac{\pi}{3}\right)$$ is
The solution curve of the differential equation $$y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0$$ passing through the point $$(e, 1)$$ is
Let $$y=y(x)$$ be the solution of the differential equation $$\sec x \mathrm{~d} y+\{2(1-x) \tan x+x(2-x)\} \mathrm{d} x=0$$ such that $$y(0)=2$$. Then $$y(2)$$ is equal to:
If $$\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2}$$ is the solution of the differential equation $$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$$ and $$y(1)=\frac{\pi}{3}$$, then $$\alpha^2$$ is equal to
A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to
If $$y=y(x)$$ is the solution curve of the differential equation $$\left(x^2-4\right) \mathrm{d} y-\left(y^2-3 y\right) \mathrm{d} x=0, x>2, y(4)=\frac{3}{2}$$ and the slope of the curve is never zero, then the value of $$y(10)$$ equals :
$2(y+2) \log _{e}(y+2) d x+\left(x+4-2 \log _{e}(y+2)\right) d y=0, y>-1$
with $x\left(e^{4}-2\right)=1$. Then $x\left(e^{9}-2\right)$ is equal to :
Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be the solution curves of the differential equation $$\frac{d y}{d x}=y+7$$ with initial conditions $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then the curves $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ intersect at
Let $$y=y(x), y > 0$$, be a solution curve of the differential equation $$\left(1+x^{2}\right) \mathrm{d} y=y(x-y) \mathrm{d} x$$. If $$y(0)=1$$ and $$y(2 \sqrt{2})=\beta$$, then
Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :
Let $$y=y(x)$$ be a solution curve of the differential equation.
$$\left(1-x^{2} y^{2}\right) d x=y d x+x d y$$.
If the line $$x=1$$ intersects the curve $$y=y(x)$$ at $$y=2$$ and the line $$x=2$$ intersects the curve $$y=y(x)$$ at $$y=\alpha$$, then a value of $$\alpha$$ is :
Let $$f$$ be a differentiable function such that $${x^2}f(x) - x = 4\int\limits_0^x {tf(t)dt} $$, $$f(1) = {2 \over 3}$$. Then $$18f(3)$$ is equal to :
If the solution curve $$f(x, y)=0$$ of the differential equation
$$\left(1+\log _{e} x\right) \frac{d x}{d y}-x \log _{e} x=e^{y}, x > 0$$,
passes through the points $$(1,0)$$ and $$(\alpha, 2)$$, then $$\alpha^{\alpha}$$ is equal to :
Let $$\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$$ be the solution of the differential equation $$2 x^{2} y \mathrm{~d} y-\left(1-x y^{2}\right) \mathrm{d} x=0, x > 0,y(2)=\sqrt{\log _{e} 2}$$. Then $$\alpha+\beta-\gamma$$ equals :
The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation
$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.
Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :
If $$y=y(x)$$ is the solution curve of the differential equation
$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to
$\left(3 y^{2}-5 x^{2}\right) y \mathrm{~d} x+2 x\left(x^{2}-y^{2}\right) \mathrm{d} y=0$
such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
Let a differentiable function $$f$$ satisfy $$f(x)+\int_\limits{3}^{x} \frac{f(t)}{t} d t=\sqrt{x+1}, x \geq 3$$. Then $$12 f(8)$$ is equal to :
$\frac{d y}{d x}=-\left(\frac{x^2+3 y^2}{3 x^2+y^2}\right), y(1)=0$ is :
Let the solution curve $$y=y(x)$$ of the differential equation
$$
\frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{3 / 2}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\} \text { pass through the origin. Then } y(1) \text { is equal to : }
$$
Let $$y=y(x)$$ be the solution of the differential equation $$x{\log _e}x{{dy} \over {dx}} + y = {x^2}{\log _e}x,(x > 1)$$. If $$y(2) = 2$$, then $$y(e)$$ is equal to
Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to
Let $$y=y(t)$$ be a solution of the differential equation $${{dy} \over {dt}} + \alpha y = \gamma {e^{ - \beta t}}$$ where, $$\alpha > 0,\beta > 0$$ and $$\gamma > 0$$. Then $$\mathop {\lim }\limits_{t \to \infty } y(t)$$
Let $$y = y(x)$$ be the solution curve of the differential equation $${{dy} \over {dx}} = {y \over x}\left( {1 + x{y^2}(1 + {{\log }_e}x)} \right),x > 0,y(1) = 3$$. Then $${{{y^2}(x)} \over 9}$$ is equal to :
Let $$y=y(x)$$ be the solution of the differential equation $$(x^2-3y^2)dx+3xy~dy=0,y(1)=1$$. Then $$6y^2(e)$$ is equal to
Let $$y = y(x)$$ be the solution of the differential equation $${x^3}dy + (xy - 1)dx = 0,x > 0,y\left( {{1 \over 2}} \right) = 3 - \mathrm{e}$$. Then y (1) is equal to
If the solution curve of the differential equation $$\frac{d y}{d x}=\frac{x+y-2}{x-y}$$ passes through the points $$(2,1)$$ and $$(\mathrm{k}+1,2), \mathrm{k}>0$$, then
Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right) y=\frac{(x+3)}{x+1}, x>-1$$, which passes through the point $$(0,1)$$. Then $$y(1)$$ is equal to :
Let the solution curve $$y=y(x)$$ of the differential equation $$\left(1+\mathrm{e}^{2 x}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)=1$$ pass through the point $$\left(0, \frac{\pi}{2}\right)$$. Then, $$\lim\limits_{x \rightarrow \infty} \mathrm{e}^{x} y(x)$$ is equal to :
Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{1 / 2}$$, $$x >1$$ passing through the point $$\left(2, \sqrt{\frac{1}{3}}\right)$$. Then $$\sqrt{7}\, y(8)$$ is equal to :
The differential equation of the family of circles passing through the points $$(0,2)$$ and $$(0,-2)$$ is :
Let the solution curve of the differential equation $$x \mathrm{~d} y=\left(\sqrt{x^{2}+y^{2}}+y\right) \mathrm{d} x, x>0$$, intersect the line $$x=1$$ at $$y=0$$ and the line $$x=2$$ at $$y=\alpha$$. Then the value of $$\alpha$$ is :
If $$y=y(x), x \in(0, \pi / 2)$$ be the solution curve of the differential equation
$$\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 \mathrm{e}^{-4 x}(2 \sin 2 x+\cos 2 x)$$,
with $$y(\pi / 4)=\mathrm{e}^{-\pi}$$, then $$y(\pi / 6)$$ is equal to :
Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be two distinct solutions of the differential equation $$\frac{d y}{d x}=x+y$$, with $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then, the number of points of intersection of $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ is
Let the solution curve $$y=f(x)$$ of the differential equation $$ \frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$$, $$x\in(-1,1)$$ pass through the origin. Then $$\int\limits_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x $$ is equal to
If $${{dy} \over {dx}} + 2y\tan x = \sin x,\,0 < x < {\pi \over 2}$$ and $$y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of $$y(x)$$ is :
Let a smooth curve $$y=f(x)$$ be such that the slope of the tangent at any point $$(x, y)$$ on it is directly proportional to $$\left(\frac{-y}{x}\right)$$. If the curve passes through the points $$(1,2)$$ and $$(8,1)$$, then $$\left|y\left(\frac{1}{8}\right)\right|$$ is equal to
The slope of the tangent to a curve $$C: y=y(x)$$ at any point $$(x, y)$$ on it is $$\frac{2 \mathrm{e}^{2 x}-6 \mathrm{e}^{-x}+9}{2+9 \mathrm{e}^{-2 x}}$$. If $$C$$ passes through the points $$\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right)$$ and $$\left(\alpha, \frac{1}{2} \mathrm{e}^{2 \alpha}\right)$$, then $$\mathrm{e}^{\alpha}$$ is equal to :
The general solution of the differential equation $$\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0$$ is :
Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}},\,a,b,c \in R$$, represents a circle with center ($$\alpha$$, $$\beta$$). Then, $$\alpha$$ + 2$$\beta$$ is equal to :
If y = y(x) is the solution of the differential equation $$\left( {1 + {e^{2x}}} \right){{dy} \over {dx}} + 2\left( {1 + {y^2}} \right){e^x} = 0$$ and y (0) = 0, then $$6\left( {y'(0) + {{\left( {y\left( {{{\log }_e}\sqrt 3 } \right)} \right)}^2}} \right)$$ is equal to
Let the solution curve of the differential equation
$$x{{dy} \over {dx}} - y = \sqrt {{y^2} + 16{x^2}} $$, $$y(1) = 3$$ be $$y = y(x)$$. Then y(2) is equal to:
Let x = x(y) be the solution of the differential equation
$$2y\,{e^{x/{y^2}}}dx + \left( {{y^2} - 4x{e^{x/{y^2}}}} \right)dy = 0$$ such that x(1) = 0. Then, x(e) is equal to :
Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 $$\tan x(\cos x - y)$$. If the curve passes through the point $$\left( {{\pi \over 4},0} \right)$$, then the value of $$\int\limits_0^{\pi /2} {y\,dx} $$ is equal to :
Let the solution curve $$y = y(x)$$ of the differential equation
$$\left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]x{{dy} \over {dx}} = x + \left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]y$$
pass through the points (1, 0) and (2$$\alpha$$, $$\alpha$$), $$\alpha$$ > 0. Then $$\alpha$$ is equal to
Let y = y(x) be the solution of the differential equation $$x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$$, $$x > 1$$, with $$y(2) = - 2$$. Then y(3) is equal to :
If the solution curve of the differential equation
$$(({\tan ^{ - 1}}y) - x)dy = (1 + {y^2})dx$$ passes through the point (1, 0), then the abscissa of the point on the curve whose ordinate is tan(1), is
Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}}$$, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is :
If $${{dy} \over {dx}} + {{{2^{x - y}}({2^y} - 1)} \over {{2^x} - 1}} = 0$$, x, y > 0, y(1) = 1, then y(2) is equal to :
If $$y = y(x)$$ is the solution of the differential equation
$$x{{dy} \over {dx}} + 2y = x\,{e^x}$$, $$y(1) = 0$$ then the local maximum value
of the function $$z(x) = {x^2}y(x) - {e^x},\,x \in R$$ is :
If the solution of the differential equation
$${{dy} \over {dx}} + {e^x}\left( {{x^2} - 2} \right)y = \left( {{x^2} - 2x} \right)\left( {{x^2} - 2} \right){e^{2x}}$$ satisfies $$y(0) = 0$$, then the value of y(2) is _______________.
If $$y = y(x)$$ is the solution of the differential equation
$$2{x^2}{{dy} \over {dx}} - 2xy + 3{y^2} = 0$$ such that $$y(e) = {e \over 3}$$, then y(1) is equal to :
Let $$g:(0,\infty ) \to R$$ be a differentiable function such that
$$\int {\left( {{{x(\cos x - \sin x)} \over {{e^x} + 1}} + {{g(x)\left( {{e^x} + 1 - x{e^x}} \right)} \over {{{({e^x} + 1)}^2}}}} \right)dx = {{x\,g(x)} \over {{e^x} + 1}} + c} $$, for all x > 0, where c is an arbitrary constant. Then :
Let $$y = y(x)$$ be the solution of the differential equation $$(x + 1)y' - y = {e^{3x}}{(x + 1)^2}$$, with $$y(0) = {1 \over 3}$$. Then, the point $$x = - {4 \over 3}$$ for the curve $$y = y(x)$$ is :
If the solution curve $$y = y(x)$$ of the differential equation $${y^2}dx + ({x^2} - xy + {y^2})dy = 0$$, which passes through the point (1, 1) and intersects the line $$y = \sqrt 3 x$$ at the point $$(\alpha ,\sqrt 3 \alpha )$$, then value of $${\log _e}(\sqrt 3 \alpha )$$ is equal to :
If x = x(y) is the solution of the differential equation
$$y{{dx} \over {dy}} = 2x + {y^3}(y + 1){e^y},\,x(1) = 0$$; then x(e) is equal to :
$${{dy} \over {dx}} = 2(y + 2\sin x - 5)x - 2\cos x$$ such that y(0) = 7. Then y($$\pi$$) is equal to :
2x2 dy + (ey $$-$$ 2x)dx = 0, x > 0. If y(e) = 1, then y(1) is equal to :
equation (x $$-$$ x3)dy = (y + yx2 $$-$$ 3x4)dx, x > 2. If y(3) = 3, then y(4) is equal to :
$${\log _{}}\left( {{{dy} \over {dx}}} \right) = 3x + 4y$$, with y(0) = 0.
If $$y\left( { - {2 \over 3}{{\log }_e}2} \right) = \alpha {\log _e}2$$, then the value of $$\alpha$$ is equal to :
equation xdy = (y + x3 cosx)dx with y($$\pi$$) = 0, then $$y\left( {{\pi \over 2}} \right)$$ is equal to :
then, the minimum value of $$y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$$ is equal to :
$${{dy} \over {dx}} = (y + 1)\left( {(y + 1){e^{{x^2}/2}} - x} \right)$$, 0 < x < 2.1, with y(2) = 0. Then the value of $${{dy} \over {dx}}$$ at x = 1 is equal to :
y2 = 4a(x + a) is :
$$2({x^2} + {x^{5/4}})dy - y(x + {x^{1/4}})dx = {2x^{9/4}}dx$$, x > 0 which
passes through the point $$\left( {1,1 - {4 \over 3}{{\log }_e}2} \right)$$, then the value of y(16) is equal to :
$$\cos x(3\sin x + \cos x + 3)dy = (1 + y\sin x(3\sin x + \cos x + 3))dx,0 \le x \le {\pi \over 2},y(0) = 0$$. Then, $$y\left( {{\pi \over 3}} \right)$$ is equal to :
$${{dy} \over {dx}}$$ = xy $$-$$ 1 + x $$-$$ y; y(0) = 0 :
$${{dy} \over {dx}}$$ + (tan x) y = sin x, $$0 \le x \le {\pi \over 3}$$, with y(0) = 0, then $$y\left( {{\pi \over 4}} \right)$$ equal to :
$$2xy{{dy} \over {dx}} = {y^2} - {x^2},x > 0$$. Let the curve C2 be the
solution of $${{2xy} \over {{x^2} - {y^2}}} = {{dy} \over {dx}}$$. If both the curves pass through (1, 1), then the area enclosed by the curves C1 and C2 is equal to :
$${{dy} \over {dx}} + 2y\tan x = \sin x,y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of the function y(x) over R is equal to:
$${{dP} \over {dt}}$$ = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is :
$${{dy} \over {dx}} + p\left( x \right)y = {2 \over \pi } cosec\,x$$,
$$0 < x < {\pi \over 2}$$, then the function p(x) is equal to :
$$\sqrt {1 + {x^2} + {y^2} + {x^2}{y^2}} $$ + xy$${{dy} \over {dx}}$$ = 0 is :
(where C is a constant of integration)
cosx$${{dy} \over {dx}}$$ + 2ysinx = sin2x, x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$.
If y$$\left( {{\pi \over 3}} \right)$$ = 0, then y$$\left( {{\pi \over 4}} \right)$$ is equal to :
equation $${{5 + {e^x}} \over {2 + y}}.{{dy} \over {dx}} + {e^x} = 0$$ satisfying y(0) = 1, then a value of y(loge13) is :
$${{dy} \over {dx}} - {{y + 3x} \over {{{\log }_e}\left( {y + 3x} \right)}} + 3 = 0$$ is:
(where c is a constant of integration)
xy'- y = x2(xcosx + sinx), x > 0. if y ($$\pi $$) = $$\pi $$ then
$$y''\left( {{\pi \over 2}} \right) + y\left( {{\pi \over 2}} \right)$$ is equal to :
x > 1, then y(4) is equal to :
(1 + e-x)(1 + y2)$${{dy} \over {dx}}$$ = y2,
which passes through the point (0, 1), is :
2x2dy= (2xy + y2)dx, then $$f\left( {{1 \over 2}} \right)$$ is equal to :
$${{2 + \sin x} \over {y + 1}}.{{dy} \over {dx}} = - \cos x$$, y > 0,y(0) = 1.
If y($$\pi $$) = a and $${{dy} \over {dx}}$$ at x = $$\pi $$ is b, then the ordered pair (a, b) is equal to :
$$\sqrt {1 - {x^2}} {{dy} \over {dx}} + \sqrt {1 - {y^2}} = 0$$, |x| < 1.
If $$y\left( {{1 \over 2}} \right) = {{\sqrt 3 } \over 2}$$, then $$y\left( { - {1 \over {\sqrt 2 }}} \right)$$ is equal to :
$$\left( {{y^2} - x} \right){{dy} \over {dx}} = 1$$, satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is :
$${{dy} \over {dx}} + y\tan x = 2x + {x^2}\tan x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, such that y(0) = 1. Then :
$${{dy} \over {dx}} = \left( {\tan x - y} \right){\sec ^2}x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
such that y (0) = 0, then $$y\left( { - {\pi \over 4}} \right)$$ is equal to :
and $$y\left( {{\pi \over 3}} \right)$$ = 0 then $$y\left( {{\pi \over 6}} \right)$$ is equal to :-
$$x{{dy} \over {dx}} + 2y$$ = x2 (x $$ \ne $$ 0) with y(1) = 1, is :
$${({x^2} + 1)^2}{{dy} \over {dx}} + 2x({x^2} + 1)y = 1$$
such that y(0) = 0. If $$\sqrt ay(1)$$ = $$\pi \over 32$$ , then the value of 'a' is :
$${{dy} \over {dx}}$$ = (x – y)2, when y(1) = 1, is :
x$$dy \over dx$$ + 2y = x2, satisfying y(1) = 1, then y($$1\over2$$) is equal to :
$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.
If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
where $$f\left( x \right) = \left\{ {\matrix{ {1,} & {x \in \left[ {0,1} \right]} \cr {0,} & {otherwise} \cr } } \right.$$
If y(0) = 0, then $$y\left( {{3 \over 2}} \right)$$ is :
(x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}}$$ + $$\lambda $$x $${{dy} \over {dx}}$$ + ky = 0,
then $$\lambda $$ + k is equal to :
then $$y\left( {{\pi \over 2}} \right)$$ is equal to :
$${{dy} \over {dx}}\, + \,{y \over 2}\,\sec x = {{\tan x} \over {2y}},\,\,$$
where 0 $$ \le $$ x < $${\pi \over 2}$$, and y (0) = 1, is given by :
$$\mathop {\lim }\limits_{t \to x} $$ $${{{t^2}f\left( x \right) - {x^2}f\left( t \right)} \over {t - x}} = 1,$$ for each x > 0, then $$f\left( {{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$ equal to :
$$\left( {x\,\log x} \right){{dy} \over {dx}} + y = 2x\,\log x,\left( {x \ge 1} \right).$$ Then $$y(e)$$ is equal to :
$$\cos x\,dy = y\left( {\sin x - y} \right)dx,\,\,0 < x <{\pi \over 2}$$ is :
$${{dy} \over {dx}} = {{x + y} \over x}$$ satisfying the condition $$y(1)=1$$ is :
where $$A$$ and $$B$$ are arbitrary constants is of
$$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right){{dy} \over {dx}} = 0,$$ is :
$$\,{\left( {1 + 3{{dy} \over {dx}}} \right)^{2/3}} = 4{{{d^3}y} \over {d{x^3}}}$$ are
Numerical
If $y=y(x)$ is the solution of the differential equation, $\sqrt{4-x^2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\left(\sin ^{-1}\left(\frac{x}{2}\right)\right)^2-y\right) \sin ^{-1}\left(\frac{x}{2}\right),-2 \leq x \leq 2, y(2)=\frac{\pi^2-8}{4}$, then $y^2(0)$ is equal to ___________.
Let $y=y(x)$ be the solution of the differential equation
$2 \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right)=0$, then $y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right)$ is equal to _________.
Let $f$ be a differentiable function such that $2(x+2)^2 f(x)-3(x+2)^2=10 \int_0^x(t+2) f(t) d t, x \geq 0$. Then $f(2)$ is equal to ________ .
Let $y=f(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x y}{x^2-1}=\frac{x^6+4 x}{\sqrt{1-x^2}},-1< x<1$ such that $f(0)=0$. If $6 \int_{-1 / 2}^{1 / 2} f(x) \mathrm{d} x=2 \pi-\alpha$ then $\alpha^2$ is equal to _________ .
For a differentiable function $$f: \mathbb{R} \rightarrow \mathbb{R}$$, suppose $$f^{\prime}(x)=3 f(x)+\alpha$$, where $$\alpha \in \mathbb{R}, f(0)=1$$ and $$\lim _\limits{x \rightarrow-\infty} f(x)=7$$. Then $$9 f\left(-\log _e 3\right)$$ is equal to _________.
Let $$\alpha|x|=|y| \mathrm{e}^{x y-\beta}, \alpha, \beta \in \mathbf{N}$$ be the solution of the differential equation $$x \mathrm{~d} y-y \mathrm{~d} x+x y(x \mathrm{~d} y+y \mathrm{~d} x)=0,y(1)=2$$. Then $$\alpha+\beta$$ is equal to ________
If the solution $$y(x)$$ of the given differential equation $$\left(e^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$$ passes through the point $$\left(\frac{\pi}{2}, 0\right)$$, then the value of $$e^{y\left(\frac{\pi}{6}\right)}$$ is equal to _________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$
Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.
Let $$y=y(x)$$ be the solution of the differential equation $$(x+y+2)^2 d x=d y, y(0)=-2$$. Let the maximum and minimum values of the function $$y=y(x)$$ in $$\left[0, \frac{\pi}{3}\right]$$ be $$\alpha$$ and $$\beta$$, respectively. If $$(3 \alpha+\pi)^2+\beta^2=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$$, then $$\gamma+\delta$$ equals _________.
Let the solution $$y=y(x)$$ of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}-y=1+4 \sin x$$ satisfy $$y(\pi)=1$$. Then $$y\left(\frac{\pi}{2}\right)+10$$ is equal to __________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\sec ^2 x d x+\left(e^{2 y} \tan ^2 x+\tan x\right) d y=0,0< x<\frac{\pi}{2}, y(\pi / 4)=0$$.
If $$y(\pi / 6)=\alpha$$, then $$e^{8 \alpha}$$ is equal to ____________.
Let $$Y=Y(X)$$ be a curve lying in the first quadrant such that the area enclosed by the line $$Y-y=Y^{\prime}(x)(X-x)$$ and the co-ordinate axes, where $$(x, y)$$ is any point on the curve, is always $$\frac{-y^2}{2 Y^{\prime}(x)}+1, Y^{\prime}(x) \neq 0$$. If $$Y(1)=1$$, then $$12 Y(2)$$ equals __________.
Let $$y=y(x)$$ be the solution of the differential equation $$\left(1-x^2\right) \mathrm{d} y=\left[x y+\left(x^3+2\right) \sqrt{3\left(1-x^2\right)}\right] \mathrm{d} x, -1< x<1, y(0)=0$$. If $$y\left(\frac{1}{2}\right)=\frac{\mathrm{m}}{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n}$$ are co-prime numbers, then $$\mathrm{m}+\mathrm{n}$$ is equal to __________.
If the solution curve $$y=y(x)$$ of the differential equation $$\left(1+y^2\right)\left(1+\log _{\mathrm{e}} x\right) d x+x d y=0, x > 0$$ passes through the point $$(1,1)$$ and $$y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\tan \left(\frac{3}{2}\right)}$$, then $$\alpha+2 \beta$$ is _________.
If the solution curve, of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y-2}{x-y}$$ passing through the point $$(2,1)$$ is $$\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{\beta} \log _{\mathrm{e}}\left(\alpha+\left(\frac{y-1}{x-1}\right)^2\right)=\log _{\mathrm{e}}|x-1|$$, then $$5 \beta+\alpha$$ is equal to __________.
$(2 x+3 y-2) \mathrm{d} x+(4 x+6 y-7) \mathrm{d} y=0, y(0)=3$, is
$\alpha x+\beta y+3 \log _e|2 x+3 y-\gamma|=6$, then $\alpha+2 \beta+3 \gamma$ is equal to ____________.
If $$y=y(x)$$ is the solution of the differential equation
$$\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x > 1$$ such that
$$y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3}) \text { and } y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text {, then } \alpha \beta \gamma \text { is equal to }$$ :
Let the tangent at any point P on a curve passing through the points (1, 1) and $$\left(\frac{1}{10}, 100\right)$$, intersect positive $$x$$-axis and $$y$$-axis at the points A and B respectively. If $$\mathrm{PA}: \mathrm{PB}=1: k$$ and $$y=y(x)$$ is the solution of the differential equation $$e^{\frac{d y}{d x}}=k x+\frac{k}{2}, y(0)=k$$, then $$4 y(1)-6 \log _{\mathrm{e}} 3$$ is equal to ____________.
Let the solution curve $$x=x(y), 0 < y < \frac{\pi}{2}$$, of the differential equation $$\left(\log _{e}(\cos y)\right)^{2} \cos y \mathrm{~d} x-\left(1+3 x \log _{e}(\cos y)\right) \sin \mathrm{y} d y=0$$ satisfy $$x\left(\frac{\pi}{3}\right)=\frac{1}{2 \log _{e} 2}$$. If $$x\left(\frac{\pi}{6}\right)=\frac{1}{\log _{e} m-\log _{e} n}$$, where $$m$$ and $$n$$ are coprime, then $$m n$$ is equal to __________.
If the solution curve of the differential equation $$\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x > 1$$ passes through the points $$\left(e, \frac{4}{3}\right)$$ and $$\left(e^{4}, \alpha\right)$$, then $$\alpha$$ is equal to ____________.
Let $$y=y(x)$$ be a solution of the differential equation $$(x \cos x) d y+(x y \sin x+y \cos x-1) d x=0,0 < x < \frac{\pi}{2}$$. If $$\frac{\pi}{3} y\left(\frac{\pi}{3}\right)=\sqrt{3}$$, then $$\left|\frac{\pi}{6} y^{\prime \prime}\left(\frac{\pi}{6}\right)+2 y^{\prime}\left(\frac{\pi}{6}\right)\right|$$ is equal to ____________.
Let $$y=y(x)$$ be the solution curve of the differential equation
$$\sin \left( {2{x^2}} \right){\log _e}\left( {\tan {x^2}} \right)dy + \left( {4xy - 4\sqrt 2 x\sin \left( {{x^2} - {\pi \over 4}} \right)} \right)dx = 0$$, $$0 < x < \sqrt {{\pi \over 2}} $$, which passes through the point $$\left(\sqrt{\frac{\pi}{6}}, 1\right)$$. Then $$\left|y\left(\sqrt{\frac{\pi}{3}}\right)\right|$$ is equal to ______________.
Suppose $$y=y(x)$$ be the solution curve to the differential equation $$\frac{d y}{d x}-y=2-e^{-x}$$ such that $$\lim\limits_{x \rightarrow \infty} y(x)$$ is finite. If $$a$$ and $$b$$ are respectively the $$x$$ - and $$y$$-intercepts of the tangent to the curve at $$x=0$$, then the value of $$a-4 b$$ is equal to _____________.
Let a curve $$y=y(x)$$ pass through the point $$(3,3)$$ and the area of the region under this curve, above the $$x$$-axis and between the abscissae 3 and $$x(>3)$$ be $$\left(\frac{y}{x}\right)^{3}$$. If this curve also passes through the point $$(\alpha, 6 \sqrt{10})$$ in the first quadrant, then $$\alpha$$ is equal to ___________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{d y}{d x}=\frac{4 y^{3}+2 y x^{2}}{3 x y^{2}+x^{3}}, y(1)=1$$.
If for some $$n \in \mathbb{N}, y(2) \in[n-1, n)$$, then $$n$$ is equal to _____________.
Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta $$ is equal to _________.
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} + {{\sqrt 2 y} \over {2{{\cos }^4}x - {{\cos }^2}x}} = x{e^{{{\tan }^{ - 1}}(\sqrt 2 \cot 2x)}},\,0 < x < {\pi \over 2}$$ with $$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {32}}$$. If $$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over {18}}{e^{ - {{\tan }^{ - 1}}(\alpha )}}$$, then the value of 3$$\alpha$$2 is equal to ___________.
Let $$y = y(x)$$ be the solution of the differential equation $$(1 - {x^2})dy = \left( {xy + ({x^3} + 2)\sqrt {1 - {x^2}} } \right)dx, - 1 < x < 1$$, and $$y(0) = 0$$. If $$\int_{{{ - 1} \over 2}}^{{1 \over 2}} {\sqrt {1 - {x^2}} y(x)dx = k} $$, then k$$-$$1 is equal to _____________.
Let the solution curve y = y(x) of the differential equation
$$(4 + {x^2})dy - 2x({x^2} + 3y + 4)dx = 0$$ pass through the origin. Then y(2) is equal to _____________.
Let $$S = (0,2\pi ) - \left\{ {{\pi \over 2},{{3\pi } \over 4},{{3\pi } \over 2},{{7\pi } \over 4}} \right\}$$. Let $$y = y(x)$$, x $$\in$$ S, be the solution curve of the differential equation $${{dy} \over {dx}} = {1 \over {1 + \sin 2x}},\,y\left( {{\pi \over 4}} \right) = {1 \over 2}$$. If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve $$y = \sqrt 2 \sin x$$ is $${{k\pi } \over {12}}$$, then k is equal to _____________.
$$({x^2} - 1){{{d^2}y} \over {d{x^2}}} + \alpha x{{dy} \over {dx}} + \beta y = 0$$, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to __________.
xdy $$-$$ ydx = $$\sqrt {({x^2} - {y^2})} dx$$, x $$ \ge $$ 1, with y(1) = 0. If the area bounded by the line x = 1, x = e$$\pi$$, y = 0 and y = y(x) is $$\alpha$$e2$$\pi$$ + $$\beta$$, then the value of 10($$\alpha$$ + $$\beta$$) is equal to __________.
$${e^{\sin y}}\cos y{{dy} \over {dx}} + {e^{\sin y}}\cos x = \cos x$$, y(0) = 0; then
$$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$ is equal to ____________.
(x + 1)dy = ((x + 1)2 + y – 3)dx, y(2) = 0, then y(3) is equal to _______.