Differential Equations · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

1

If for the solution curve $y=f(x)$ of the differential equation $\frac{d y}{d x}+(\tan x) y=\frac{2+\sec x}{(1+2 \sec x)^2}$, $x \in\left(\frac{-\pi}{2}, \frac{\pi}{2}\right), f\left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{10}$, then $f\left(\frac{\pi}{4}\right)$ is equal to:

JEE Main 2025 (Online) 29th January Evening Shift
2

Let y = y(x) be the solution of the differential equation :

$\cos x\left(\log _e(\cos x)\right)^2 d y+\left(\sin x-3 y \sin x \log _e(\cos x)\right) d x=0$, x ∈ (0, $\frac{\pi}{2}$ ). If $ y(\frac{\pi}{4}) $ = $-\frac{1}{\log_{e}2}$, then $ y(\frac{\pi}{6}) $ is equal to :

JEE Main 2025 (Online) 29th January Morning Shift
3

Let for some function $\mathrm{y}=f(x), \int_0^x t f(t) d t=x^2 f(x), x>0$ and $f(2)=3$. Then $f(6)$ is equal to

JEE Main 2025 (Online) 28th January Morning Shift
4

Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(x y-5 x^2 \sqrt{1+x^2}\right) d x+\left(1+x^2\right) d y=0, y(0)=0$. Then $y(\sqrt{3})$ is equal to

JEE Main 2025 (Online) 24th January Morning Shift
5

Let $x=x(y)$ be the solution of the differential equation $y=\left(x-y \frac{\mathrm{~d} x}{\mathrm{~d} y}\right) \sin \left(\frac{x}{y}\right), y>0$ and $x(1)=\frac{\pi}{2}$. Then $\cos (x(2))$ is equal to :

JEE Main 2025 (Online) 23rd January Evening Shift
6

Let a curve $y=f(x)$ pass through the points $(0,5)$ and $\left(\log _e 2, k\right)$. If the curve satisfies the differential equation $2(3+y) e^{2 x} d x-\left(7+e^{2 x}\right) d y=0$, then $k$ is equal to

JEE Main 2025 (Online) 23rd January Morning Shift
7

If $x=f(y)$ is the solution of the differential equation $\left(1+y^2\right)+\left(x-2 \mathrm{e}^{\tan ^{-1} y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0, y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with $f(0)=1$, then $f\left(\frac{1}{\sqrt{3}}\right)$ is equal to :

JEE Main 2025 (Online) 22nd January Evening Shift
8

Let $x=x(y)$ be the solution of the differential equation $y^2 \mathrm{~d} x+\left(x-\frac{1}{y}\right) \mathrm{d} y=0$. If $x(1)=1$, then $x\left(\frac{1}{2}\right)$ is :

JEE Main 2025 (Online) 22nd January Morning Shift
9

Let $f(x)$ be a real differentiable function such that $f(0)=1$ and $f(x+y)=f(x) f^{\prime}(y)+f^{\prime}(x) f(y)$ for all $x, y \in \mathbf{R}$. Then $\sum_\limits{n=1}^{100} \log _e f(n)$ is equal to :

JEE Main 2025 (Online) 22nd January Morning Shift
10

Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be a twice differentiable function such that $f(x+y)=f(x) f(y)$ for all $x, y \in \mathbf{R}$. If $f^{\prime}(0)=4 \mathrm{a}$ and $f$ satisfies $f^{\prime \prime}(x)-3 \mathrm{a} f^{\prime}(x)-f(x)=0, \mathrm{a}>0$, then the area of the region $\mathrm{R}=\{(x, y) \mid 0 \leq y \leq f(a x), 0 \leq x \leq 2\}$ is :

JEE Main 2025 (Online) 22nd January Morning Shift
11

Let $$\int_\limits0^x \sqrt{1-\left(y^{\prime}(t)\right)^2} d t=\int_0^x y(t) d t, 0 \leq x \leq 3, y \geq 0, y(0)=0$$. Then at $$x=2, y^{\prime \prime}+y+1$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
12

The solution of the differential equation $$(x^2+y^2) \mathrm{d} x-5 x y \mathrm{~d} y=0, y(1)=0$$, is :

JEE Main 2024 (Online) 9th April Morning Shift
13

The solution curve, of the differential equation $$2 y \frac{\mathrm{d} y}{\mathrm{~d} x}+3=5 \frac{\mathrm{d} y}{\mathrm{~d} x}$$, passing through the point $$(0,1)$$ is a conic, whose vertex lies on the line :

JEE Main 2024 (Online) 9th April Morning Shift
14

Let $$y=y(x)$$ be the solution curve of the differential equation $$\sec y \frac{\mathrm{d} y}{\mathrm{~d} x}+2 x \sin y=x^3 \cos y, y(1)=0$$. Then $$y(\sqrt{3})$$ is equal to:

JEE Main 2024 (Online) 8th April Evening Shift
15

Let $$f(x)$$ be a positive function such that the area bounded by $$y=f(x), y=0$$ from $$x=0$$ to $$x=a>0$$ is $$e^{-a}+4 a^2+a-1$$. Then the differential equation, whose general solution is $$y=c_1 f(x)+c_2$$, where $$c_1$$ and $$c_2$$ are arbitrary constants, is

JEE Main 2024 (Online) 8th April Morning Shift
16

Let $$y=y(x)$$ be the solution of the differential equation $$(1+y^2) e^{\tan x} d x+\cos ^2 x(1+e^{2 \tan x}) d y=0, y(0)=1$$. Then $$y\left(\frac{\pi}{4}\right)$$ is equal to

JEE Main 2024 (Online) 8th April Morning Shift
17

Suppose the solution of the differential equation $$\frac{d y}{d x}=\frac{(2+\alpha) x-\beta y+2}{\beta x-2 \alpha y-(\beta \gamma-4 \alpha)}$$ represents a circle passing through origin. Then the radius of this circle is :

JEE Main 2024 (Online) 6th April Evening Shift
18

Let $$y=y(x)$$ be the solution of the differential equation $$\left(2 x \log _e x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _e x, x>0$$ and $$y\left(e^{-1}\right)=0$$. Then, $$y(e)$$ is equal to

JEE Main 2024 (Online) 6th April Morning Shift
19

Let $$y=y(x)$$ be the solution of the differential equation $$\left(1+x^2\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}$$, $$y(1)=0$$. Then $$y(0)$$ is

JEE Main 2024 (Online) 6th April Morning Shift
20

The differential equation of the family of circles passing through the origin and having centre at the line $$y=x$$ is :

JEE Main 2024 (Online) 5th April Evening Shift
21

If $$y=y(x)$$ is the solution of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y=\sin (2 x), y(0)=\frac{3}{4}$$, then $$y\left(\frac{\pi}{8}\right)$$ is equal to :

JEE Main 2024 (Online) 5th April Morning Shift
22

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2+4)^2 d y+(2 x^3 y+8 x y-2) d x=0$$. If $$y(0)=0$$, then $$y(2)$$ is equal to

JEE Main 2024 (Online) 4th April Evening Shift
23

If the solution $$y=y(x)$$ of the differential equation $$(x^4+2 x^3+3 x^2+2 x+2) \mathrm{d} y-(2 x^2+2 x+3) \mathrm{d} x=0$$ satisfies $$y(-1)=-\frac{\pi}{4}$$, then $$y(0)$$ is equal to :

JEE Main 2024 (Online) 4th April Morning Shift
24
Let $\alpha$ be a non-zero real number. Suppose $f: \mathbf{R} \rightarrow \mathbf{R}$ is a differentiable function such that $f(0)=2$ and $\lim\limits_{x \rightarrow-\infty} f(x)=1$. If $f^{\prime}(x)=\alpha f(x)+3$, for all $x \in \mathbf{R}$, then $f\left(-\log _{\mathrm{e}} 2\right)$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
25
Let $y=y(x)$ be the solution of the differential equation

$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x(x+y)^3-x(x+y)-1, y(0)=1$.

Then, $\left(\frac{1}{\sqrt{2}}+y\left(\frac{1}{\sqrt{2}}\right)\right)^2$ equals :
JEE Main 2024 (Online) 1st February Morning Shift
26

The temperature $$T(t)$$ of a body at time $$t=0$$ is $$160^{\circ} \mathrm{F}$$ and it decreases continuously as per the differential equation $$\frac{d T}{d t}=-K(T-80)$$, where $$K$$ is a positive constant. If $$T(15)=120^{\circ} \mathrm{F}$$, then $$T(45)$$ is equal to

JEE Main 2024 (Online) 31st January Evening Shift
27

Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}=\frac{(\tan x)+y}{\sin x(\sec x-\sin x \tan x)}, x \in\left(0, \frac{\pi}{2}\right)$$ satisfying the condition $$y\left(\frac{\pi}{4}\right)=2$$. Then, $$y\left(\frac{\pi}{3}\right)$$ is

JEE Main 2024 (Online) 31st January Morning Shift
28

The solution curve of the differential equation $$y \frac{d x}{d y}=x\left(\log _e x-\log _e y+1\right), x>0, y>0$$ passing through the point $$(e, 1)$$ is

JEE Main 2024 (Online) 31st January Morning Shift
29

Let $$y=y(x)$$ be the solution of the differential equation $$\sec x \mathrm{~d} y+\{2(1-x) \tan x+x(2-x)\} \mathrm{d} x=0$$ such that $$y(0)=2$$. Then $$y(2)$$ is equal to:

JEE Main 2024 (Online) 30th January Morning Shift
30

If $$\sin \left(\frac{y}{x}\right)=\log _e|x|+\frac{\alpha}{2}$$ is the solution of the differential equation $$x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$$ and $$y(1)=\frac{\pi}{3}$$, then $$\alpha^2$$ is equal to

JEE Main 2024 (Online) 29th January Evening Shift
31

A function $$y=f(x)$$ satisfies $$f(x) \sin 2 x+\sin x-\left(1+\cos ^2 x\right) f^{\prime}(x)=0$$ with condition $$f(0)=0$$. Then, $$f\left(\frac{\pi}{2}\right)$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
32

If $$y=y(x)$$ is the solution curve of the differential equation $$\left(x^2-4\right) \mathrm{d} y-\left(y^2-3 y\right) \mathrm{d} x=0, x>2, y(4)=\frac{3}{2}$$ and the slope of the curve is never zero, then the value of $$y(10)$$ equals :

JEE Main 2024 (Online) 27th January Evening Shift
33
Let $x=x(\mathrm{t})$ and $y=y(\mathrm{t})$ be solutions of the differential equations $\frac{\mathrm{d} x}{\mathrm{dt}}+\mathrm{a} x=0$ and $\frac{\mathrm{d} y}{\mathrm{dt}}+\mathrm{by}=0$ respectively, $\mathrm{a}, \mathrm{b} \in \mathbf{R}$. Given that $x(0)=2 ; y(0)=1$ and $3 y(1)=2 x(1)$, the value of $\mathrm{t}$, for which $x(\mathrm{t})=y(\mathrm{t})$, is :
JEE Main 2024 (Online) 27th January Morning Shift
34
Let $x=x(y)$ be the solution of the differential equation

$2(y+2) \log _{e}(y+2) d x+\left(x+4-2 \log _{e}(y+2)\right) d y=0, y>-1$

with $x\left(e^{4}-2\right)=1$. Then $x\left(e^{9}-2\right)$ is equal to :
JEE Main 2023 (Online) 15th April Morning Shift
35

Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be the solution curves of the differential equation $$\frac{d y}{d x}=y+7$$ with initial conditions $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then the curves $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ intersect at

JEE Main 2023 (Online) 13th April Morning Shift
36

Let $$y=y(x), y > 0$$, be a solution curve of the differential equation $$\left(1+x^{2}\right) \mathrm{d} y=y(x-y) \mathrm{d} x$$. If $$y(0)=1$$ and $$y(2 \sqrt{2})=\beta$$, then

JEE Main 2023 (Online) 12th April Morning Shift
37

Let $$y=y(x)$$ be the solution of the differential equation $$\frac{d y}{d x}+\frac{5}{x\left(x^{5}+1\right)} y=\frac{\left(x^{5}+1\right)^{2}}{x^{7}}, x > 0$$. If $$y(1)=2$$, then $$y(2)$$ is equal to :

JEE Main 2023 (Online) 11th April Evening Shift
38

Let $$y=y(x)$$ be a solution curve of the differential equation.

$$\left(1-x^{2} y^{2}\right) d x=y d x+x d y$$.

If the line $$x=1$$ intersects the curve $$y=y(x)$$ at $$y=2$$ and the line $$x=2$$ intersects the curve $$y=y(x)$$ at $$y=\alpha$$, then a value of $$\alpha$$ is :

JEE Main 2023 (Online) 11th April Morning Shift
39

Let $$f$$ be a differentiable function such that $${x^2}f(x) - x = 4\int\limits_0^x {tf(t)dt} $$, $$f(1) = {2 \over 3}$$. Then $$18f(3)$$ is equal to :

JEE Main 2023 (Online) 10th April Morning Shift
40

If the solution curve $$f(x, y)=0$$ of the differential equation

$$\left(1+\log _{e} x\right) \frac{d x}{d y}-x \log _{e} x=e^{y}, x > 0$$,

passes through the points $$(1,0)$$ and $$(\alpha, 2)$$, then $$\alpha^{\alpha}$$ is equal to :

JEE Main 2023 (Online) 6th April Evening Shift
41

Let $$\alpha x=\exp \left(x^{\beta} y^{\gamma}\right)$$ be the solution of the differential equation $$2 x^{2} y \mathrm{~d} y-\left(1-x y^{2}\right) \mathrm{d} x=0, x > 0,y(2)=\sqrt{\log _{e} 2}$$. Then $$\alpha+\beta-\gamma$$ equals :

JEE Main 2023 (Online) 1st February Evening Shift
42

The area enclosed by the closed curve $$\mathrm{C}$$ given by the differential equation

$$\frac{d y}{d x}+\frac{x+a}{y-2}=0, y(1)=0$$ is $$4 \pi$$.

Let $$P$$ and $$Q$$ be the points of intersection of the curve $$\mathrm{C}$$ and the $$y$$-axis. If normals at $$P$$ and $$Q$$ on the curve $$\mathrm{C}$$ intersect $$x$$-axis at points $$R$$ and $$S$$ respectively, then the length of the line segment $$R S$$ is :

JEE Main 2023 (Online) 1st February Morning Shift
43

If $$y=y(x)$$ is the solution curve of the differential equation

$$\frac{d y}{d x}+y \tan x=x \sec x, 0 \leq x \leq \frac{\pi}{3}, y(0)=1$$, then $$y\left(\frac{\pi}{6}\right)$$ is equal to

JEE Main 2023 (Online) 1st February Morning Shift
44
Let $y=y(x)$ be the solution of the differential equation

$\left(3 y^{2}-5 x^{2}\right) y \mathrm{~d} x+2 x\left(x^{2}-y^{2}\right) \mathrm{d} y=0$

such that $y(1)=1$. Then $\left|(y(2))^{3}-12 y(2)\right|$ is equal to :
JEE Main 2023 (Online) 31st January Evening Shift
45

Let a differentiable function $$f$$ satisfy $$f(x)+\int_\limits{3}^{x} \frac{f(t)}{t} d t=\sqrt{x+1}, x \geq 3$$. Then $$12 f(8)$$ is equal to :

JEE Main 2023 (Online) 31st January Morning Shift
46
The solution of the differential equation

$\frac{d y}{d x}=-\left(\frac{x^2+3 y^2}{3 x^2+y^2}\right), y(1)=0$ is :
JEE Main 2023 (Online) 30th January Evening Shift
47

Let the solution curve $$y=y(x)$$ of the differential equation

$$ \frac{\mathrm{d} y}{\mathrm{~d} x}-\frac{3 x^{5} \tan ^{-1}\left(x^{3}\right)}{\left(1+x^{6}\right)^{3 / 2}} y=2 x \exp \left\{\frac{x^{3}-\tan ^{-1} x^{3}}{\sqrt{\left(1+x^{6}\right)}}\right\} \text { pass through the origin. Then } y(1) \text { is equal to : } $$

JEE Main 2023 (Online) 30th January Morning Shift
48

Let $$y=y(x)$$ be the solution of the differential equation $$x{\log _e}x{{dy} \over {dx}} + y = {x^2}{\log _e}x,(x > 1)$$. If $$y(2) = 2$$, then $$y(e)$$ is equal to

JEE Main 2023 (Online) 29th January Evening Shift
49

Let $$y=f(x)$$ be the solution of the differential equation $$y(x+1)dx-x^2dy=0,y(1)=e$$. Then $$\mathop {\lim }\limits_{x \to {0^ + }} f(x)$$ is equal to

JEE Main 2023 (Online) 29th January Morning Shift
50

Let $$y=y(t)$$ be a solution of the differential equation $${{dy} \over {dt}} + \alpha y = \gamma {e^{ - \beta t}}$$ where, $$\alpha > 0,\beta > 0$$ and $$\gamma > 0$$. Then $$\mathop {\lim }\limits_{t \to \infty } y(t)$$

JEE Main 2023 (Online) 25th January Evening Shift
51

Let $$y = y(x)$$ be the solution curve of the differential equation $${{dy} \over {dx}} = {y \over x}\left( {1 + x{y^2}(1 + {{\log }_e}x)} \right),x > 0,y(1) = 3$$. Then $${{{y^2}(x)} \over 9}$$ is equal to :

JEE Main 2023 (Online) 25th January Morning Shift
52

Let $$y=y(x)$$ be the solution of the differential equation $$(x^2-3y^2)dx+3xy~dy=0,y(1)=1$$. Then $$6y^2(e)$$ is equal to

JEE Main 2023 (Online) 24th January Evening Shift
53

Let $$y = y(x)$$ be the solution of the differential equation $${x^3}dy + (xy - 1)dx = 0,x > 0,y\left( {{1 \over 2}} \right) = 3 - \mathrm{e}$$. Then y (1) is equal to

JEE Main 2023 (Online) 24th January Morning Shift
54

If the solution curve of the differential equation $$\frac{d y}{d x}=\frac{x+y-2}{x-y}$$ passes through the points $$(2,1)$$ and $$(\mathrm{k}+1,2), \mathrm{k}>0$$, then

JEE Main 2022 (Online) 29th July Evening Shift
55

Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\left(\frac{2 x^{2}+11 x+13}{x^{3}+6 x^{2}+11 x+6}\right) y=\frac{(x+3)}{x+1}, x>-1$$, which passes through the point $$(0,1)$$. Then $$y(1)$$ is equal to :

JEE Main 2022 (Online) 29th July Evening Shift
56

Let the solution curve $$y=y(x)$$ of the differential equation $$\left(1+\mathrm{e}^{2 x}\right)\left(\frac{\mathrm{d} y}{\mathrm{~d} x}+y\right)=1$$ pass through the point $$\left(0, \frac{\pi}{2}\right)$$. Then, $$\lim\limits_{x \rightarrow \infty} \mathrm{e}^{x} y(x)$$ is equal to :

JEE Main 2022 (Online) 29th July Morning Shift
57

Let $$y=y(x)$$ be the solution curve of the differential equation $$ \frac{d y}{d x}+\frac{1}{x^{2}-1} y=\left(\frac{x-1}{x+1}\right)^{1 / 2}$$, $$x >1$$ passing through the point $$\left(2, \sqrt{\frac{1}{3}}\right)$$. Then $$\sqrt{7}\, y(8)$$ is equal to :

JEE Main 2022 (Online) 28th July Evening Shift
58

The differential equation of the family of circles passing through the points $$(0,2)$$ and $$(0,-2)$$ is :

JEE Main 2022 (Online) 28th July Evening Shift
59

Let the solution curve of the differential equation $$x \mathrm{~d} y=\left(\sqrt{x^{2}+y^{2}}+y\right) \mathrm{d} x, x>0$$, intersect the line $$x=1$$ at $$y=0$$ and the line $$x=2$$ at $$y=\alpha$$. Then the value of $$\alpha$$ is :

JEE Main 2022 (Online) 28th July Morning Shift
60

If $$y=y(x), x \in(0, \pi / 2)$$ be the solution curve of the differential equation

$$\left(\sin ^{2} 2 x\right) \frac{d y}{d x}+\left(8 \sin ^{2} 2 x+2 \sin 4 x\right) y=2 \mathrm{e}^{-4 x}(2 \sin 2 x+\cos 2 x)$$,

with $$y(\pi / 4)=\mathrm{e}^{-\pi}$$, then $$y(\pi / 6)$$ is equal to :

JEE Main 2022 (Online) 28th July Morning Shift
61

Let $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ be two distinct solutions of the differential equation $$\frac{d y}{d x}=x+y$$, with $$y_{1}(0)=0$$ and $$y_{2}(0)=1$$ respectively. Then, the number of points of intersection of $$y=y_{1}(x)$$ and $$y=y_{2}(x)$$ is

JEE Main 2022 (Online) 27th July Morning Shift
62

Let the solution curve $$y=f(x)$$ of the differential equation $$ \frac{d y}{d x}+\frac{x y}{x^{2}-1}=\frac{x^{4}+2 x}{\sqrt{1-x^{2}}}$$, $$x\in(-1,1)$$ pass through the origin. Then $$\int\limits_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) d x $$ is equal to

JEE Main 2022 (Online) 26th July Evening Shift
63

If $${{dy} \over {dx}} + 2y\tan x = \sin x,\,0 < x < {\pi \over 2}$$ and $$y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of $$y(x)$$ is :

JEE Main 2022 (Online) 26th July Morning Shift
64

Let a smooth curve $$y=f(x)$$ be such that the slope of the tangent at any point $$(x, y)$$ on it is directly proportional to $$\left(\frac{-y}{x}\right)$$. If the curve passes through the points $$(1,2)$$ and $$(8,1)$$, then $$\left|y\left(\frac{1}{8}\right)\right|$$ is equal to

JEE Main 2022 (Online) 25th July Evening Shift
65

The slope of the tangent to a curve $$C: y=y(x)$$ at any point $$(x, y)$$ on it is $$\frac{2 \mathrm{e}^{2 x}-6 \mathrm{e}^{-x}+9}{2+9 \mathrm{e}^{-2 x}}$$. If $$C$$ passes through the points $$\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right)$$ and $$\left(\alpha, \frac{1}{2} \mathrm{e}^{2 \alpha}\right)$$, then $$\mathrm{e}^{\alpha}$$ is equal to :

JEE Main 2022 (Online) 25th July Morning Shift
66

The general solution of the differential equation $$\left(x-y^{2}\right) \mathrm{d} x+y\left(5 x+y^{2}\right) \mathrm{d} y=0$$ is :

JEE Main 2022 (Online) 25th July Morning Shift
67

Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}},\,a,b,c \in R$$, represents a circle with center ($$\alpha$$, $$\beta$$). Then, $$\alpha$$ + 2$$\beta$$ is equal to :

JEE Main 2022 (Online) 30th June Morning Shift
68

If y = y(x) is the solution of the differential equation $$\left( {1 + {e^{2x}}} \right){{dy} \over {dx}} + 2\left( {1 + {y^2}} \right){e^x} = 0$$ and y (0) = 0, then $$6\left( {y'(0) + {{\left( {y\left( {{{\log }_e}\sqrt 3 } \right)} \right)}^2}} \right)$$ is equal to

JEE Main 2022 (Online) 29th June Evening Shift
69

Let the solution curve of the differential equation

$$x{{dy} \over {dx}} - y = \sqrt {{y^2} + 16{x^2}} $$, $$y(1) = 3$$ be $$y = y(x)$$. Then y(2) is equal to:

JEE Main 2022 (Online) 29th June Morning Shift
70

Let x = x(y) be the solution of the differential equation

$$2y\,{e^{x/{y^2}}}dx + \left( {{y^2} - 4x{e^{x/{y^2}}}} \right)dy = 0$$ such that x(1) = 0. Then, x(e) is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
71

Let the slope of the tangent to a curve y = f(x) at (x, y) be given by 2 $$\tan x(\cos x - y)$$. If the curve passes through the point $$\left( {{\pi \over 4},0} \right)$$, then the value of $$\int\limits_0^{\pi /2} {y\,dx} $$ is equal to :

JEE Main 2022 (Online) 28th June Evening Shift
72

Let the solution curve $$y = y(x)$$ of the differential equation

$$\left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]x{{dy} \over {dx}} = x + \left[ {{x \over {\sqrt {{x^2} - {y^2}} }} + {e^{{y \over x}}}} \right]y$$

pass through the points (1, 0) and (2$$\alpha$$, $$\alpha$$), $$\alpha$$ > 0. Then $$\alpha$$ is equal to

JEE Main 2022 (Online) 28th June Morning Shift
73

Let y = y(x) be the solution of the differential equation $$x(1 - {x^2}){{dy} \over {dx}} + (3{x^2}y - y - 4{x^3}) = 0$$, $$x > 1$$, with $$y(2) = - 2$$. Then y(3) is equal to :

JEE Main 2022 (Online) 28th June Morning Shift
74

If the solution curve of the differential equation

$$(({\tan ^{ - 1}}y) - x)dy = (1 + {y^2})dx$$ passes through the point (1, 0), then the abscissa of the point on the curve whose ordinate is tan(1), is

JEE Main 2022 (Online) 27th June Evening Shift
75

Let $${{dy} \over {dx}} = {{ax - by + a} \over {bx + cy + a}}$$, where a, b, c are constants, represent a circle passing through the point (2, 5). Then the shortest distance of the point (11, 6) from this circle is :

JEE Main 2022 (Online) 27th June Morning Shift
76

If $${{dy} \over {dx}} + {{{2^{x - y}}({2^y} - 1)} \over {{2^x} - 1}} = 0$$, x, y > 0, y(1) = 1, then y(2) is equal to :

JEE Main 2022 (Online) 27th June Morning Shift
77

If $$y = y(x)$$ is the solution of the differential equation

$$x{{dy} \over {dx}} + 2y = x\,{e^x}$$, $$y(1) = 0$$ then the local maximum value

of the function $$z(x) = {x^2}y(x) - {e^x},\,x \in R$$ is :

JEE Main 2022 (Online) 26th June Evening Shift
78

If the solution of the differential equation

$${{dy} \over {dx}} + {e^x}\left( {{x^2} - 2} \right)y = \left( {{x^2} - 2x} \right)\left( {{x^2} - 2} \right){e^{2x}}$$ satisfies $$y(0) = 0$$, then the value of y(2) is _______________.

JEE Main 2022 (Online) 26th June Evening Shift
79

If $$y = y(x)$$ is the solution of the differential equation

$$2{x^2}{{dy} \over {dx}} - 2xy + 3{y^2} = 0$$ such that $$y(e) = {e \over 3}$$, then y(1) is equal to :

JEE Main 2022 (Online) 25th June Evening Shift
80

Let $$g:(0,\infty ) \to R$$ be a differentiable function such that

$$\int {\left( {{{x(\cos x - \sin x)} \over {{e^x} + 1}} + {{g(x)\left( {{e^x} + 1 - x{e^x}} \right)} \over {{{({e^x} + 1)}^2}}}} \right)dx = {{x\,g(x)} \over {{e^x} + 1}} + c} $$, for all x > 0, where c is an arbitrary constant. Then :

JEE Main 2022 (Online) 25th June Morning Shift
81

Let $$y = y(x)$$ be the solution of the differential equation $$(x + 1)y' - y = {e^{3x}}{(x + 1)^2}$$, with $$y(0) = {1 \over 3}$$. Then, the point $$x = - {4 \over 3}$$ for the curve $$y = y(x)$$ is :

JEE Main 2022 (Online) 25th June Morning Shift
82

If the solution curve $$y = y(x)$$ of the differential equation $${y^2}dx + ({x^2} - xy + {y^2})dy = 0$$, which passes through the point (1, 1) and intersects the line $$y = \sqrt 3 x$$ at the point $$(\alpha ,\sqrt 3 \alpha )$$, then value of $${\log _e}(\sqrt 3 \alpha )$$ is equal to :

JEE Main 2022 (Online) 25th June Morning Shift
83

If x = x(y) is the solution of the differential equation

$$y{{dx} \over {dy}} = 2x + {y^3}(y + 1){e^y},\,x(1) = 0$$; then x(e) is equal to :

JEE Main 2022 (Online) 24th June Morning Shift
84
If y = y(x) is the solution curve of the differential equation $${x^2}dy + \left( {y - {1 \over x}} \right)dx = 0$$ ; x > 0 and y(1) = 1, then $$y\left( {{1 \over 2}} \right)$$ is equal to :
JEE Main 2021 (Online) 1st September Evening Shift
85
If $${{dy} \over {dx}} = {{{2^x}y + {2^y}{{.2}^x}} \over {{2^x} + {2^{x + y}}{{\log }_e}2}}$$, y(0) = 0, then for y = 1, the value of x lies in the interval :
JEE Main 2021 (Online) 31st August Evening Shift
86
If $$y{{dy} \over {dx}} = x\left[ {{{{y^2}} \over {{x^2}}} + {{\phi \left( {{{{y^2}} \over {{x^2}}}} \right)} \over {\phi '\left( {{{{y^2}} \over {{x^2}}}} \right)}}} \right]$$, x > 0, $$\phi$$ > 0, and y(1) = $$-$$1, then $$\phi \left( {{{{y^2}} \over 4}} \right)$$ is equal to :
JEE Main 2021 (Online) 31st August Evening Shift
87
If $${{dy} \over {dx}} = {{{2^{x + y}} - {2^x}} \over {{2^y}}}$$, y(0) = 1, then y(1) is equal to :
JEE Main 2021 (Online) 31st August Morning Shift
88
A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2, $$-$$3) from the line 3x + 4y = 5, is given by :
JEE Main 2021 (Online) 27th August Evening Shift
89
If the solution curve of the differential equation (2x $$-$$ 10y3)dy + ydx = 0, passes through the points (0, 1) and (2, $$\beta$$), then $$\beta$$ is a root of the equation :
JEE Main 2021 (Online) 27th August Evening Shift
90
Let y = y(x) be the solution of the differential equation

$${{dy} \over {dx}} = 2(y + 2\sin x - 5)x - 2\cos x$$ such that y(0) = 7. Then y($$\pi$$) is equal to :
JEE Main 2021 (Online) 27th August Morning Shift
91
Let us consider a curve, y = f(x) passing through the point ($$-$$2, 2) and the slope of the tangent to the curve at any point (x, f(x)) is given by f(x) + xf'(x) = x2. Then :
JEE Main 2021 (Online) 27th August Morning Shift
92
Let y(x) be the solution of the differential equation

2x2 dy + (ey $$-$$ 2x)dx = 0, x > 0. If y(e) = 1, then y(1) is equal to :
JEE Main 2021 (Online) 26th August Evening Shift
93
Let y = y(x) be a solution curve of the differential equation $$(y + 1){\tan ^2}x\,dx + \tan x\,dy + y\,dx = 0$$, $$x \in \left( {0,{\pi \over 2}} \right)$$. If $$\mathop {\lim }\limits_{x \to 0 + } xy(x) = 1$$, then the value of $$y\left( {{\pi \over 4}} \right)$$ is :
JEE Main 2021 (Online) 26th August Morning Shift
94
Let y = y(x) be the solution of the differential

equation (x $$-$$ x3)dy = (y + yx2 $$-$$ 3x4)dx, x > 2. If y(3) = 3, then y(4) is equal to :
JEE Main 2021 (Online) 27th July Evening Shift
95
Let y = y(x) be solution of the differential equation

$${\log _{}}\left( {{{dy} \over {dx}}} \right) = 3x + 4y$$, with y(0) = 0.

If $$y\left( { - {2 \over 3}{{\log }_e}2} \right) = \alpha {\log _e}2$$, then the value of $$\alpha$$ is equal to :
JEE Main 2021 (Online) 27th July Morning Shift
96
Let y = y(x) be the solution of the differential

equation xdy = (y + x3 cosx)dx with y($$\pi$$) = 0, then $$y\left( {{\pi \over 2}} \right)$$ is equal to :
JEE Main 2021 (Online) 25th July Evening Shift
97
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} = 1 + x{e^{y - x}}, - \sqrt 2 < x < \sqrt 2 ,y(0) = 0$$

then, the minimum value of $$y(x),x \in \left( { - \sqrt 2 ,\sqrt 2 } \right)$$ is equal to :
JEE Main 2021 (Online) 25th July Morning Shift
98
Let y = y(x) be the solution of the differential equation $$\cos e{c^2}xdy + 2dx = (1 + y\cos 2x)\cos e{c^2}xdx$$, with $$y\left( {{\pi \over 4}} \right) = 0$$. Then, the value of $${(y(0) + 1)^2}$$ is equal to :
JEE Main 2021 (Online) 22th July Evening Shift
99
Let y = y(x) satisfies the equation $${{dy} \over {dx}} - |A| = 0$$, for all x > 0, where $$A = \left[ {\matrix{ y & {\sin x} & 1 \cr 0 & { - 1} & 1 \cr 2 & 0 & {{1 \over x}} \cr } } \right]$$. If $$y(\pi ) = \pi + 2$$, then the value of $$y\left( {{\pi \over 2}} \right)$$ is :
JEE Main 2021 (Online) 20th July Evening Shift
100
Let y = y(x) be the solution of the differential equation $$x\tan \left( {{y \over x}} \right)dy = \left( {y\tan \left( {{y \over x}} \right) - x} \right)dx$$, $$ - 1 \le x \le 1$$, $$y\left( {{1 \over 2}} \right) = {\pi \over 6}$$. Then the area of the region bounded by the curves x = 0, $$x = {1 \over {\sqrt 2 }}$$ and y = y(x) in the upper half plane is :
JEE Main 2021 (Online) 20th July Morning Shift
101
Let y = y(x) be the solution of the differential equation $${e^x}\sqrt {1 - {y^2}} dx + \left( {{y \over x}} \right)dy = 0$$, y(1) = $$-$$1. Then the value of (y(3))2 is equal to :
JEE Main 2021 (Online) 20th July Morning Shift
102
Let y = y(x) be the solution of the differential equation

$${{dy} \over {dx}} = (y + 1)\left( {(y + 1){e^{{x^2}/2}} - x} \right)$$, 0 < x < 2.1, with y(2) = 0. Then the value of $${{dy} \over {dx}}$$ at x = 1 is equal to :
JEE Main 2021 (Online) 18th March Evening Shift
103
The differential equation satisfied by the system of parabolas

y2 = 4a(x + a) is :
JEE Main 2021 (Online) 18th March Morning Shift
104
If the curve y = y(x) is the solution of the differential equation

$$2({x^2} + {x^{5/4}})dy - y(x + {x^{1/4}})dx = {2x^{9/4}}dx$$, x > 0 which

passes through the point $$\left( {1,1 - {4 \over 3}{{\log }_e}2} \right)$$, then the value of y(16) is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
105
Let y = y(x) be the solution of the differential equation

$$\cos x(3\sin x + \cos x + 3)dy = (1 + y\sin x(3\sin x + \cos x + 3))dx,0 \le x \le {\pi \over 2},y(0) = 0$$. Then, $$y\left( {{\pi \over 3}} \right)$$ is equal to :
JEE Main 2021 (Online) 17th March Evening Shift
106
Which of the following is true for y(x) that satisfies the differential equation

$${{dy} \over {dx}}$$ = xy $$-$$ 1 + x $$-$$ y; y(0) = 0 :
JEE Main 2021 (Online) 17th March Morning Shift
107
If y = y(x) is the solution of the differential equation

$${{dy} \over {dx}}$$ + (tan x) y = sin x, $$0 \le x \le {\pi \over 3}$$, with y(0) = 0, then $$y\left( {{\pi \over 4}} \right)$$ equal to :
JEE Main 2021 (Online) 16th March Evening Shift
108
Let C1 be the curve obtained by the solution of differential equation

$$2xy{{dy} \over {dx}} = {y^2} - {x^2},x > 0$$. Let the curve C2 be the

solution of $${{2xy} \over {{x^2} - {y^2}}} = {{dy} \over {dx}}$$. If both the curves pass through (1, 1), then the area enclosed by the curves C1 and C2 is equal to :
JEE Main 2021 (Online) 16th March Evening Shift
109
If y = y(x) is the solution of the differential equation,

$${{dy} \over {dx}} + 2y\tan x = \sin x,y\left( {{\pi \over 3}} \right) = 0$$, then the maximum value of the function y(x) over R is equal to:
JEE Main 2021 (Online) 16th March Morning Shift
110
The rate of growth of bacteria in a culture is proportional to the number of bacteria present and the bacteria count is 1000 at initial time t = 0. The number of bacteria is increased by 20% in 2 hours. If the population of bacteria is 2000 after $${k \over {{{\log }_e}\left( {{6 \over 5}} \right)}}$$ hours, then $${\left( {{k \over {{{\log }_e}2}}} \right)^2}$$ is equal to :
JEE Main 2021 (Online) 26th February Morning Shift
111
If a curve passes through the origin and the slope of the tangent to it at any point (x, y) is $${{{x^2} - 4x + y + 8} \over {x - 2}}$$, then this curve also passes through the point :
JEE Main 2021 (Online) 25th February Morning Shift
112
If a curve y = f(x) passes through the point (1, 2) and satisfies $$x {{dy} \over {dx}} + y = b{x^4}$$, then for what value of b, $$\int\limits_1^2 {f(x)dx = {{62} \over 5}} $$?
JEE Main 2021 (Online) 24th February Evening Shift
113
The population P = P(t) at time 't' of a certain species follows the differential equation

$${{dP} \over {dt}}$$ = 0.5P – 450. If P(0) = 850, then the time at which population becomes zero is :
JEE Main 2021 (Online) 24th February Morning Shift
114
If $$y = \left( {{2 \over \pi }x - 1} \right) cosec\,x$$ is the solution of the differential equation,

$${{dy} \over {dx}} + p\left( x \right)y = {2 \over \pi } cosec\,x$$,

$$0 < x < {\pi \over 2}$$, then the function p(x) is equal to :
JEE Main 2020 (Online) 6th September Evening Slot
115
The general solution of the differential equation

$$\sqrt {1 + {x^2} + {y^2} + {x^2}{y^2}} $$ + xy$${{dy} \over {dx}}$$ = 0 is :

(where C is a constant of integration)
JEE Main 2020 (Online) 6th September Morning Slot
116
Let y = y(x) be the solution of the differential equation

cosx$${{dy} \over {dx}}$$ + 2ysinx = sin2x, x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$.

If y$$\left( {{\pi \over 3}} \right)$$ = 0, then y$$\left( {{\pi \over 4}} \right)$$ is equal to :
JEE Main 2020 (Online) 5th September Evening Slot
117
If y = y(x) is the solution of the differential

equation $${{5 + {e^x}} \over {2 + y}}.{{dy} \over {dx}} + {e^x} = 0$$ satisfying y(0) = 1, then a value of y(loge13) is :
JEE Main 2020 (Online) 5th September Morning Slot
118
The solution of the differential equation

$${{dy} \over {dx}} - {{y + 3x} \over {{{\log }_e}\left( {y + 3x} \right)}} + 3 = 0$$ is:

(where c is a constant of integration)
JEE Main 2020 (Online) 4th September Evening Slot
119
Let y = y(x) be the solution of the differential equation,
xy'- y = x2(xcosx + sinx), x > 0. if y ($$\pi $$) = $$\pi $$ then
$$y''\left( {{\pi \over 2}} \right) + y\left( {{\pi \over 2}} \right)$$ is equal to :
JEE Main 2020 (Online) 4th September Morning Slot
120
If x3dy + xy dx = x2dy + 2y dx; y(2) = e and
x > 1, then y(4) is equal to :
JEE Main 2020 (Online) 3rd September Evening Slot
121
The solution curve of the differential equation,

(1 + e-x)(1 + y2)$${{dy} \over {dx}}$$ = y2,

which passes through the point (0, 1), is :
JEE Main 2020 (Online) 3rd September Morning Slot
122
If a curve y = f(x), passing through the point (1, 2), is the solution of the differential equation,
2x2dy= (2xy + y2)dx, then $$f\left( {{1 \over 2}} \right)$$ is equal to :
JEE Main 2020 (Online) 2nd September Evening Slot
123
Let y = y(x) be the solution of the differential equation,
$${{2 + \sin x} \over {y + 1}}.{{dy} \over {dx}} = - \cos x$$, y > 0,y(0) = 1.
If y($$\pi $$) = a and $${{dy} \over {dx}}$$ at x = $$\pi $$ is b, then the ordered pair (a, b) is equal to :
JEE Main 2020 (Online) 2nd September Morning Slot
124
If $${{dy} \over {dx}} = {{xy} \over {{x^2} + {y^2}}}$$; y(1) = 1; then a value of x satisfying y(x) = e is :
JEE Main 2020 (Online) 9th January Evening Slot
125
The differential equation of the family of curves, x2 = 4b(y + b), b $$ \in $$ R, is :
JEE Main 2020 (Online) 8th January Evening Slot
126
Let y = y(x) be a solution of the differential equation,

$$\sqrt {1 - {x^2}} {{dy} \over {dx}} + \sqrt {1 - {y^2}} = 0$$, |x| < 1.

If $$y\left( {{1 \over 2}} \right) = {{\sqrt 3 } \over 2}$$, then $$y\left( { - {1 \over {\sqrt 2 }}} \right)$$ is equal to :
JEE Main 2020 (Online) 8th January Morning Slot
127
Let y = y(x) be the solution curve of the differential equation,

$$\left( {{y^2} - x} \right){{dy} \over {dx}} = 1$$, satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is :
JEE Main 2020 (Online) 7th January Evening Slot
128
If y = y(x) is the solution of the differential equation, $${e^y}\left( {{{dy} \over {dx}} - 1} \right) = {e^x}$$ such that y(0) = 0, then y(1) is equal to:
JEE Main 2020 (Online) 7th January Morning Slot
129
The general solution of the differential equation (y2 – x3)dx – xydy = 0 (x $$ \ne $$ 0) is : (where c is a constant of integration)
JEE Main 2019 (Online) 12th April Evening Slot
130
Consider the differential equation, $${y^2}dx + \left( {x - {1 \over y}} \right)dy = 0$$, If value of y is 1 when x = 1, then the value of x for which y = 2, is :
JEE Main 2019 (Online) 12th April Morning Slot
131
Let y = y(x) be the solution of the differential equation,
$${{dy} \over {dx}} + y\tan x = 2x + {x^2}\tan x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, such that y(0) = 1. Then :
JEE Main 2019 (Online) 10th April Evening Slot
132
If y = y(x) is the solution of the differential equation
$${{dy} \over {dx}} = \left( {\tan x - y} \right){\sec ^2}x$$, $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$,
such that y (0) = 0, then $$y\left( { - {\pi \over 4}} \right)$$ is equal to :
JEE Main 2019 (Online) 10th April Morning Slot
133
If $$\cos x{{dy} \over {dx}} - y\sin x = 6x$$, (0 < x < $${\pi \over 2}$$)
and $$y\left( {{\pi \over 3}} \right)$$ = 0 then $$y\left( {{\pi \over 6}} \right)$$ is equal to :-
JEE Main 2019 (Online) 9th April Evening Slot
134
The solution of the differential equation

$$x{{dy} \over {dx}} + 2y$$ = x2 (x $$ \ne $$ 0) with y(1) = 1, is :
JEE Main 2019 (Online) 9th April Morning Slot
135
Let y = y(x) be the solution of the differential equation,

$${({x^2} + 1)^2}{{dy} \over {dx}} + 2x({x^2} + 1)y = 1$$

such that y(0) = 0. If $$\sqrt ay(1)$$ = $$\pi \over 32$$ , then the value of 'a' is :
JEE Main 2019 (Online) 8th April Morning Slot
136
If a curve passes through the point (1, –2) and has slope of the tangent at any point (x, y) on it as $${{{x^2} - 2y} \over x}$$, then the curve also passes through the point :
JEE Main 2019 (Online) 12th January Evening Slot
137
Let y = y(x) be the solution of the differential equation, x$${{dy} \over {dx}}$$ + y = x loge x, (x > 1). If 2y(2) = loge 4 $$-$$ 1, then y(e) is equal to :
JEE Main 2019 (Online) 12th January Morning Slot
138
The solution of the differential equation,

$${{dy} \over {dx}}$$ = (x – y)2, when y(1) = 1, is :
JEE Main 2019 (Online) 11th January Evening Slot
139
If y(x) is the solution of the differential equation $${{dy} \over {dx}} + \left( {{{2x + 1} \over x}} \right)y = {e^{ - 2x}},\,\,x > 0,\,$$ where $$y\left( 1 \right) = {1 \over 2}{e^{ - 2}},$$ then
JEE Main 2019 (Online) 11th January Morning Slot
140
Let f be a differentiable function such that f '(x) = 7 - $${3 \over 4}{{f\left( x \right)} \over x},$$ (x > 0) and f(1) $$ \ne $$ 4. Then $$\mathop {\lim }\limits_{x \to 0'} \,$$ xf$$\left( {{1 \over x}} \right)$$ :
JEE Main 2019 (Online) 10th January Evening Slot
141
The curve amongst the family of curves represented by the differential equation, (x2 – y2)dx + 2xy dy = 0 which passes through (1, 1) is :
JEE Main 2019 (Online) 10th January Evening Slot
142
If  $${{dy} \over {dx}} + {3 \over {{{\cos }^2}x}}y = {1 \over {{{\cos }^2}x}},\,\,x \in \left( {{{ - \pi } \over 3},{\pi \over 3}} \right)$$  and  $$y\left( {{\pi \over 4}} \right) = {4 \over 3},$$  then  $$y\left( { - {\pi \over 4}} \right)$$   equals -
JEE Main 2019 (Online) 10th January Morning Slot
143
Let f : [0,1] $$ \to $$ R be such that f(xy) = f(x).f(y), for all x, y $$ \in $$ [0, 1], and f(0) $$ \ne $$ 0. If y = y(x) satiesfies the differential equation, $${{dy} \over {dx}}$$ = f(x) with y(0) = 1, then y$$\left( {{1 \over 4}} \right)$$ + y$$\left( {{3 \over 4}} \right)$$ is equal to :
JEE Main 2019 (Online) 9th January Evening Slot
144
If y = y(x) is the solution of the differential equation,

x$$dy \over dx$$ + 2y = x2, satisfying y(1) = 1, then y($$1\over2$$) is equal to :
JEE Main 2019 (Online) 9th January Morning Slot
145
The differential equation representing the family of ellipse having foci eith on the x-axis or on the $$y$$-axis, center at the origin and passing through the point (0, 3) is :
JEE Main 2018 (Online) 16th April Morning Slot
146
Let y = y(x) be the solution of the differential equation

$$\sin x{{dy} \over {dx}} + y\cos x = 4x$$, $$x \in \left( {0,\pi } \right)$$.

If $$y\left( {{\pi \over 2}} \right) = 0$$, then $$y\left( {{\pi \over 6}} \right)$$ is equal to :
JEE Main 2018 (Offline)
147
The curve satifying the differeial equation, (x2 $$-$$ y2) dx + 2xydy = 0 and passing through the point (1, 1) is :
JEE Main 2018 (Online) 15th April Evening Slot
148
Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} + 2y = f\left( x \right),$$

where $$f\left( x \right) = \left\{ {\matrix{ {1,} & {x \in \left[ {0,1} \right]} \cr {0,} & {otherwise} \cr } } \right.$$

If y(0) = 0, then $$y\left( {{3 \over 2}} \right)$$ is :
JEE Main 2018 (Online) 15th April Morning Slot
149
If 2x = y$${^{{1 \over 5}}}$$ + y$${^{ - {1 \over 5}}}$$ and

(x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}}$$ + $$\lambda $$x $${{dy} \over {dx}}$$ + ky = 0,

then $$\lambda $$ + k is equal to :
JEE Main 2017 (Online) 9th April Morning Slot
150
The curve satisfying the differential equation, ydx $$-$$(x + 3y2)dy = 0 and passing through the point (1, 1), also passes through the point :
JEE Main 2017 (Online) 8th April Morning Slot
151
If $$\left( {2 + \sin x} \right){{dy} \over {dx}} + \left( {y + 1} \right)\cos x = 0$$ and y(0) = 1,

then $$y\left( {{\pi \over 2}} \right)$$ is equal to :
JEE Main 2017 (Offline)
152
The solution of the differential equation

$${{dy} \over {dx}}\, + \,{y \over 2}\,\sec x = {{\tan x} \over {2y}},\,\,$$

where 0 $$ \le $$ x < $${\pi \over 2}$$, and y (0) = 1, is given by :
JEE Main 2016 (Online) 10th April Morning Slot
153
If   f(x) is a differentiable function in the interval (0, $$\infty $$) such that f (1) = 1 and

$$\mathop {\lim }\limits_{t \to x} $$   $${{{t^2}f\left( x \right) - {x^2}f\left( t \right)} \over {t - x}} = 1,$$ for each x > 0, then $$f\left( {{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}} \right)$$ equal to :
JEE Main 2016 (Online) 9th April Morning Slot
154
If a curve $$y=f(x)$$ passes through the point $$(1,-1)$$ and satisfies the differential equation, $$y(1+xy) dx=x$$ $$dy$$, then $$f\left( { - {1 \over 2}} \right)$$ is equal to :
JEE Main 2016 (Offline)
155
Let $$y(x)$$ be the solution of the differential equation

$$\left( {x\,\log x} \right){{dy} \over {dx}} + y = 2x\,\log x,\left( {x \ge 1} \right).$$ Then $$y(e)$$ is equal to :
JEE Main 2015 (Offline)
156
Let the population of rabbits surviving at time $$t$$ be governed by the differential equation $${{dp\left( t \right)} \over {dt}} = {1 \over 2}p\left( t \right) - 200.$$ If $$p(0)=100,$$ then $$p(t)$$ equals:
JEE Main 2014 (Offline)
157
At present, a firm is manufacturing $$2000$$ items. It is estimated that the rate of change of production P w.r.t. additional number of workers $$x$$ is given by $${{dp} \over {dx}} = 100 - 12\sqrt x .$$ If the firm employs $$25$$ more workers, then the new level of production of items is
JEE Main 2013 (Offline)
158
The population $$p$$ $$(t)$$ at time $$t$$ of a certain mouse species satisfies the differential equation $${{dp\left( t \right)} \over {dt}} = 0.5\,p\left( t \right) - 450.\,\,$$ If $$p(0)=850,$$ then the time at which the population becomes zero is :
AIEEE 2012
159
If $${{dy} \over {dx}} = y + 3 > 0\,\,$$ and $$y(0)=2,$$ then $$y\left( {\ln 2} \right)$$ is equal to :
AIEEE 2011
160
Let $$I$$ be the purchase value of an equipment and $$V(t)$$ be the value after it has been used for $$t$$ years. The value $$V(t)$$ depreciates at a rate given by differential equation $${{dv\left( t \right)} \over {dt}} = - k\left( {T - t} \right),$$ where $$k>0$$ is a constant and $$T$$ is the total life in years of the equipment. Then the scrap value $$V(T)$$ of the equipment is
AIEEE 2011
161
Solution of the differential equation

$$\cos x\,dy = y\left( {\sin x - y} \right)dx,\,\,0 < x <{\pi \over 2}$$ is :
AIEEE 2010
162
The differential equation which represents the family of curves $$y = {c_1}{e^{{c_2}x}},$$ where $${c_1}$$ , and $${c_2}$$ are arbitrary constants, is
AIEEE 2009
163
The solution of the differential equation

$${{dy} \over {dx}} = {{x + y} \over x}$$ satisfying the condition $$y(1)=1$$ is :
AIEEE 2008
164
The differential equation of all circles passing through the origin and having their centres on the $$x$$-axis is :
AIEEE 2007
165
The differential equation whose solution is $$A{x^2} + B{y^2} = 1$$
where $$A$$ and $$B$$ are arbitrary constants is of
AIEEE 2006
166
The differential equation representing the family of curves $${y^2} = 2c\left( {x + \sqrt c } \right),$$ where $$c>0,$$ is a parameter, is of order and degree as follows:
AIEEE 2005
167
If $$x{{dy} \over {dx}} = y\left( {\log y - \log x + 1} \right),$$ then the solution of the equation is :
AIEEE 2005
168
Solution of the differential equation $$ydx + \left( {x + {x^2}y} \right)dy = 0$$ is
AIEEE 2004
169
The differential equation for the family of circle $${x^2} + {y^2} - 2ay = 0,$$ where a is an arbitrary constant is :
AIEEE 2004
170
The degree and order of the differential equation of the family of all parabolas whose axis is $$x$$-axis, are respectively.
AIEEE 2003
171
The solution of the differential equation

$$\left( {1 + {y^2}} \right) + \left( {x - {e^{{{\tan }^{ - 1}}y}}} \right){{dy} \over {dx}} = 0,$$ is :
AIEEE 2003
172
The solution of the equation $$\,{{{d^2}y} \over {d{x^2}}} = {e^{ - 2x}}$$
AIEEE 2002
173
The order and degree of the differential equation
$$\,{\left( {1 + 3{{dy} \over {dx}}} \right)^{2/3}} = 4{{{d^3}y} \over {d{x^3}}}$$ are
AIEEE 2002

Numerical

1

If $y=y(x)$ is the solution of the differential equation, $\sqrt{4-x^2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\left(\sin ^{-1}\left(\frac{x}{2}\right)\right)^2-y\right) \sin ^{-1}\left(\frac{x}{2}\right),-2 \leq x \leq 2, y(2)=\frac{\pi^2-8}{4}$, then $y^2(0)$ is equal to ___________.

JEE Main 2025 (Online) 28th January Evening Shift
2

Let $y=y(x)$ be the solution of the differential equation

$2 \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right)=0$, then $y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right)$ is equal to _________.

JEE Main 2025 (Online) 24th January Evening Shift
3

Let $f$ be a differentiable function such that $2(x+2)^2 f(x)-3(x+2)^2=10 \int_0^x(t+2) f(t) d t, x \geq 0$. Then $f(2)$ is equal to ________ .

JEE Main 2025 (Online) 24th January Morning Shift
4

Let $y=f(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{x y}{x^2-1}=\frac{x^6+4 x}{\sqrt{1-x^2}},-1< x<1$ such that $f(0)=0$. If $6 \int_{-1 / 2}^{1 / 2} f(x) \mathrm{d} x=2 \pi-\alpha$ then $\alpha^2$ is equal to _________ .

JEE Main 2025 (Online) 22nd January Evening Shift
5

For a differentiable function $$f: \mathbb{R} \rightarrow \mathbb{R}$$, suppose $$f^{\prime}(x)=3 f(x)+\alpha$$, where $$\alpha \in \mathbb{R}, f(0)=1$$ and $$\lim _\limits{x \rightarrow-\infty} f(x)=7$$. Then $$9 f\left(-\log _e 3\right)$$ is equal to _________.

JEE Main 2024 (Online) 9th April Evening Shift
6

Let $$\alpha|x|=|y| \mathrm{e}^{x y-\beta}, \alpha, \beta \in \mathbf{N}$$ be the solution of the differential equation $$x \mathrm{~d} y-y \mathrm{~d} x+x y(x \mathrm{~d} y+y \mathrm{~d} x)=0,y(1)=2$$. Then $$\alpha+\beta$$ is equal to ________

JEE Main 2024 (Online) 8th April Evening Shift
7

If the solution $$y(x)$$ of the given differential equation $$\left(e^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$$ passes through the point $$\left(\frac{\pi}{2}, 0\right)$$, then the value of $$e^{y\left(\frac{\pi}{6}\right)}$$ is equal to _________.

JEE Main 2024 (Online) 6th April Evening Shift
8

Let $$y=y(x)$$ be the solution of the differential equation

$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$

Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.

JEE Main 2024 (Online) 5th April Evening Shift
9

Let $$y=y(x)$$ be the solution of the differential equation $$(x+y+2)^2 d x=d y, y(0)=-2$$. Let the maximum and minimum values of the function $$y=y(x)$$ in $$\left[0, \frac{\pi}{3}\right]$$ be $$\alpha$$ and $$\beta$$, respectively. If $$(3 \alpha+\pi)^2+\beta^2=\gamma+\delta \sqrt{3}, \gamma, \delta \in \mathbb{Z}$$, then $$\gamma+\delta$$ equals _________.

JEE Main 2024 (Online) 4th April Evening Shift
10

Let the solution $$y=y(x)$$ of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}-y=1+4 \sin x$$ satisfy $$y(\pi)=1$$. Then $$y\left(\frac{\pi}{2}\right)+10$$ is equal to __________.

JEE Main 2024 (Online) 4th April Morning Shift
11
If $\frac{\mathrm{d} x}{\mathrm{~d} y}=\frac{1+x-y^2}{y}, x(1)=1$, then $5 x(2)$ is equal to __________.
JEE Main 2024 (Online) 1st February Evening Shift
12
If $x=x(t)$ is the solution of the differential equation $(t+1) \mathrm{d} x=\left(2 x+(t+1)^4\right) \mathrm{dt}, x(0)=2$, then, $x(1)$ equals _________.
JEE Main 2024 (Online) 1st February Morning Shift
13

Let $$y=y(x)$$ be the solution of the differential equation

$$\sec ^2 x d x+\left(e^{2 y} \tan ^2 x+\tan x\right) d y=0,0< x<\frac{\pi}{2}, y(\pi / 4)=0$$.

If $$y(\pi / 6)=\alpha$$, then $$e^{8 \alpha}$$ is equal to ____________.

JEE Main 2024 (Online) 31st January Evening Shift
14

Let $$Y=Y(X)$$ be a curve lying in the first quadrant such that the area enclosed by the line $$Y-y=Y^{\prime}(x)(X-x)$$ and the co-ordinate axes, where $$(x, y)$$ is any point on the curve, is always $$\frac{-y^2}{2 Y^{\prime}(x)}+1, Y^{\prime}(x) \neq 0$$. If $$Y(1)=1$$, then $$12 Y(2)$$ equals __________.

JEE Main 2024 (Online) 30th January Evening Shift
15

Let $$y=y(x)$$ be the solution of the differential equation $$\left(1-x^2\right) \mathrm{d} y=\left[x y+\left(x^3+2\right) \sqrt{3\left(1-x^2\right)}\right] \mathrm{d} x, -1< x<1, y(0)=0$$. If $$y\left(\frac{1}{2}\right)=\frac{\mathrm{m}}{\mathrm{n}}, \mathrm{m}$$ and $$\mathrm{n}$$ are co-prime numbers, then $$\mathrm{m}+\mathrm{n}$$ is equal to __________.

JEE Main 2024 (Online) 30th January Morning Shift
16

If the solution curve $$y=y(x)$$ of the differential equation $$\left(1+y^2\right)\left(1+\log _{\mathrm{e}} x\right) d x+x d y=0, x > 0$$ passes through the point $$(1,1)$$ and $$y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\tan \left(\frac{3}{2}\right)}$$, then $$\alpha+2 \beta$$ is _________.

JEE Main 2024 (Online) 29th January Morning Shift
17

If the solution curve, of the differential equation $$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x+y-2}{x-y}$$ passing through the point $$(2,1)$$ is $$\tan ^{-1}\left(\frac{y-1}{x-1}\right)-\frac{1}{\beta} \log _{\mathrm{e}}\left(\alpha+\left(\frac{y-1}{x-1}\right)^2\right)=\log _{\mathrm{e}}|x-1|$$, then $$5 \beta+\alpha$$ is equal to __________.

JEE Main 2024 (Online) 27th January Evening Shift
18
If the solution of the differential equation

$(2 x+3 y-2) \mathrm{d} x+(4 x+6 y-7) \mathrm{d} y=0, y(0)=3$, is

$\alpha x+\beta y+3 \log _e|2 x+3 y-\gamma|=6$, then $\alpha+2 \beta+3 \gamma$ is equal to ____________.
JEE Main 2024 (Online) 27th January Morning Shift
19

If $$y=y(x)$$ is the solution of the differential equation

$$\frac{d y}{d x}+\frac{4 x}{\left(x^{2}-1\right)} y=\frac{x+2}{\left(x^{2}-1\right)^{\frac{5}{2}}}, x > 1$$ such that

$$y(2)=\frac{2}{9} \log _{e}(2+\sqrt{3}) \text { and } y(\sqrt{2})=\alpha \log _{e}(\sqrt{\alpha}+\beta)+\beta-\sqrt{\gamma}, \alpha, \beta, \gamma \in \mathbb{N} \text {, then } \alpha \beta \gamma \text { is equal to }$$ :

JEE Main 2023 (Online) 13th April Evening Shift
20

Let the tangent at any point P on a curve passing through the points (1, 1) and $$\left(\frac{1}{10}, 100\right)$$, intersect positive $$x$$-axis and $$y$$-axis at the points A and B respectively. If $$\mathrm{PA}: \mathrm{PB}=1: k$$ and $$y=y(x)$$ is the solution of the differential equation $$e^{\frac{d y}{d x}}=k x+\frac{k}{2}, y(0)=k$$, then $$4 y(1)-6 \log _{\mathrm{e}} 3$$ is equal to ____________.

JEE Main 2023 (Online) 10th April Evening Shift
21

Let the solution curve $$x=x(y), 0 < y < \frac{\pi}{2}$$, of the differential equation $$\left(\log _{e}(\cos y)\right)^{2} \cos y \mathrm{~d} x-\left(1+3 x \log _{e}(\cos y)\right) \sin \mathrm{y} d y=0$$ satisfy $$x\left(\frac{\pi}{3}\right)=\frac{1}{2 \log _{e} 2}$$. If $$x\left(\frac{\pi}{6}\right)=\frac{1}{\log _{e} m-\log _{e} n}$$, where $$m$$ and $$n$$ are coprime, then $$m n$$ is equal to __________.

JEE Main 2023 (Online) 8th April Evening Shift
22

If the solution curve of the differential equation $$\left(y-2 \log _{e} x\right) d x+\left(x \log _{e} x^{2}\right) d y=0, x > 1$$ passes through the points $$\left(e, \frac{4}{3}\right)$$ and $$\left(e^{4}, \alpha\right)$$, then $$\alpha$$ is equal to ____________.

JEE Main 2023 (Online) 8th April Morning Shift
23

Let $$y=y(x)$$ be a solution of the differential equation $$(x \cos x) d y+(x y \sin x+y \cos x-1) d x=0,0 < x < \frac{\pi}{2}$$. If $$\frac{\pi}{3} y\left(\frac{\pi}{3}\right)=\sqrt{3}$$, then $$\left|\frac{\pi}{6} y^{\prime \prime}\left(\frac{\pi}{6}\right)+2 y^{\prime}\left(\frac{\pi}{6}\right)\right|$$ is equal to ____________.

JEE Main 2023 (Online) 6th April Morning Shift
24

Let $$y=y(x)$$ be the solution curve of the differential equation

$$\sin \left( {2{x^2}} \right){\log _e}\left( {\tan {x^2}} \right)dy + \left( {4xy - 4\sqrt 2 x\sin \left( {{x^2} - {\pi \over 4}} \right)} \right)dx = 0$$, $$0 < x < \sqrt {{\pi \over 2}} $$, which passes through the point $$\left(\sqrt{\frac{\pi}{6}}, 1\right)$$. Then $$\left|y\left(\sqrt{\frac{\pi}{3}}\right)\right|$$ is equal to ______________.

JEE Main 2022 (Online) 27th July Morning Shift
25

Suppose $$y=y(x)$$ be the solution curve to the differential equation $$\frac{d y}{d x}-y=2-e^{-x}$$ such that $$\lim\limits_{x \rightarrow \infty} y(x)$$ is finite. If $$a$$ and $$b$$ are respectively the $$x$$ - and $$y$$-intercepts of the tangent to the curve at $$x=0$$, then the value of $$a-4 b$$ is equal to _____________.

JEE Main 2022 (Online) 26th July Evening Shift
26

Let a curve $$y=y(x)$$ pass through the point $$(3,3)$$ and the area of the region under this curve, above the $$x$$-axis and between the abscissae 3 and $$x(>3)$$ be $$\left(\frac{y}{x}\right)^{3}$$. If this curve also passes through the point $$(\alpha, 6 \sqrt{10})$$ in the first quadrant, then $$\alpha$$ is equal to ___________.

JEE Main 2022 (Online) 26th July Morning Shift
27

Let $$y=y(x)$$ be the solution of the differential equation

$$\frac{d y}{d x}=\frac{4 y^{3}+2 y x^{2}}{3 x y^{2}+x^{3}}, y(1)=1$$.

If for some $$n \in \mathbb{N}, y(2) \in[n-1, n)$$, then $$n$$ is equal to _____________.

JEE Main 2022 (Online) 25th July Evening Shift
28

Let y = y(x), x > 1, be the solution of the differential equation $$(x - 1){{dy} \over {dx}} + 2xy = {1 \over {x - 1}}$$, with $$y(2) = {{1 + {e^4}} \over {2{e^4}}}$$. If $$y(3) = {{{e^\alpha } + 1} \over {\beta {e^\alpha }}}$$, then the value of $$\alpha + \beta $$ is equal to _________.

JEE Main 2022 (Online) 29th June Evening Shift
29

Let y = y(x) be the solution of the differential equation $${{dy} \over {dx}} + {{\sqrt 2 y} \over {2{{\cos }^4}x - {{\cos }^2}x}} = x{e^{{{\tan }^{ - 1}}(\sqrt 2 \cot 2x)}},\,0 < x < {\pi \over 2}$$ with $$y\left( {{\pi \over 4}} \right) = {{{\pi ^2}} \over {32}}$$. If $$y\left( {{\pi \over 3}} \right) = {{{\pi ^2}} \over {18}}{e^{ - {{\tan }^{ - 1}}(\alpha )}}$$, then the value of 3$$\alpha$$2 is equal to ___________.

JEE Main 2022 (Online) 29th June Morning Shift
30

Let $$y = y(x)$$ be the solution of the differential equation $$(1 - {x^2})dy = \left( {xy + ({x^3} + 2)\sqrt {1 - {x^2}} } \right)dx, - 1 < x < 1$$, and $$y(0) = 0$$. If $$\int_{{{ - 1} \over 2}}^{{1 \over 2}} {\sqrt {1 - {x^2}} y(x)dx = k} $$, then k$$-$$1 is equal to _____________.

JEE Main 2022 (Online) 27th June Evening Shift
31

Let the solution curve y = y(x) of the differential equation

$$(4 + {x^2})dy - 2x({x^2} + 3y + 4)dx = 0$$ pass through the origin. Then y(2) is equal to _____________.

JEE Main 2022 (Online) 26th June Morning Shift
32

Let $$S = (0,2\pi ) - \left\{ {{\pi \over 2},{{3\pi } \over 4},{{3\pi } \over 2},{{7\pi } \over 4}} \right\}$$. Let $$y = y(x)$$, x $$\in$$ S, be the solution curve of the differential equation $${{dy} \over {dx}} = {1 \over {1 + \sin 2x}},\,y\left( {{\pi \over 4}} \right) = {1 \over 2}$$. If the sum of abscissas of all the points of intersection of the curve y = y(x) with the curve $$y = \sqrt 2 \sin x$$ is $${{k\pi } \over {12}}$$, then k is equal to _____________.

JEE Main 2022 (Online) 26th June Morning Shift
33
If $${y^{1/4}} + {y^{ - 1/4}} = 2x$$, and

$$({x^2} - 1){{{d^2}y} \over {d{x^2}}} + \alpha x{{dy} \over {dx}} + \beta y = 0$$, then | $$\alpha$$ $$-$$ $$\beta$$ | is equal to __________.
JEE Main 2021 (Online) 27th August Morning Shift
34
Let y = y(x) be the solution of the differential equation dy = e$$\alpha$$x + y dx; $$\alpha$$ $$\in$$ N. If y(loge2) = loge2 and y(0) = loge$$\left( {{1 \over 2}} \right)$$, then the value of $$\alpha$$ is equal to _____________.
JEE Main 2021 (Online) 27th July Evening Shift
35
If $$y = y(x),y \in \left[ {0,{\pi \over 2}} \right)$$ is the solution of the differential equation $$\sec y{{dy} \over {dx}} - \sin (x + y) - \sin (x - y) = 0$$, with y(0) = 0, then $$5y'\left( {{\pi \over 2}} \right)$$ is equal to ______________.
JEE Main 2021 (Online) 27th July Morning Shift
36
Let a curve y = f(x) pass through the point (2, (loge2)2) and have slope $${{2y} \over {x{{\log }_e}x}}$$ for all positive real value of x. Then the value of f(e) is equal to ______________.
JEE Main 2021 (Online) 25th July Evening Shift
37
Let y = y(x) be solution of the following differential equation $${e^y}{{dy} \over {dx}} - 2{e^y}\sin x + \sin x{\cos ^2}x = 0,y\left( {{\pi \over 2}} \right) = 0$$ If $$y(0) = {\log _e}(\alpha + \beta {e^{ - 2}})$$, then $$4(\alpha + \beta )$$ is equal to ______________.
JEE Main 2021 (Online) 25th July Morning Shift
38
Let y = y(x) be the solution of the differential equation $$\left( {(x + 2){e^{\left( {{{y + 1} \over {x + 2}}} \right)}} + (y + 1)} \right)dx = (x + 2)dy$$, y(1) = 1. If the domain of y = y(x) is an open interval ($$\alpha$$, $$\beta$$), then | $$\alpha$$ + $$\beta$$| is equal to ______________.
JEE Main 2021 (Online) 22th July Evening Shift
39
Let a curve y = y(x) be given by the solution of the differential equation $$\cos \left( {{1 \over 2}{{\cos }^{ - 1}}({e^{ - x}})} \right)dx = \sqrt {{e^{2x}} - 1} dy$$. If it intersects y-axis at y = $$-$$1, and the intersection point of the curve with x-axis is ($$\alpha$$, 0), then e$$\alpha$$ is equal to __________________.
JEE Main 2021 (Online) 20th July Evening Shift
40
Let y = y(x) be the solution of the differential equation

xdy $$-$$ ydx = $$\sqrt {({x^2} - {y^2})} dx$$, x $$ \ge $$ 1, with y(1) = 0. If the area bounded by the line x = 1, x = e$$\pi$$, y = 0 and y = y(x) is $$\alpha$$e2$$\pi$$ + $$\beta$$, then the value of 10($$\alpha$$ + $$\beta$$) is equal to __________.
JEE Main 2021 (Online) 18th March Evening Shift
41
Let the curve y = y(x) be the solution of the differential equation, $${{dy} \over {dx}}$$ = 2(x + 1). If the numerical value of area bounded by the curve y = y(x) and x-axis is $${{4\sqrt 8 } \over 3}$$, then the value of y(1) is equal to _________.
JEE Main 2021 (Online) 16th March Morning Shift
42
The difference between degree and order of a differential equation that represents the family of curves given by $${y^2} = a\left( {x + {{\sqrt a } \over 2}} \right)$$, a > 0 is _________.
JEE Main 2021 (Online) 26th February Morning Shift
43
If y = y(x) is the solution of the equation

$${e^{\sin y}}\cos y{{dy} \over {dx}} + {e^{\sin y}}\cos x = \cos x$$, y(0) = 0; then

$$1 + y\left( {{\pi \over 6}} \right) + {{\sqrt 3 } \over 2}y\left( {{\pi \over 3}} \right) + {1 \over {\sqrt 2 }}y\left( {{\pi \over 4}} \right)$$ is equal to ____________.
JEE Main 2021 (Online) 26th February Morning Shift
44
If the curve, y = y(x) represented by the solution of the differential equation (2xy2 $$-$$ y)dx + xdy = 0, passes through the intersection of the lines, 2x $$-$$ 3y = 1 and 3x + 2y = 8, then |y(1)| is equal to _________.
JEE Main 2021 (Online) 25th February Evening Shift
45
If for x $$ \ge $$ 0, y = y(x) is the solution of the differential equation
(x + 1)dy = ((x + 1)2 + y – 3)dx, y(2) = 0, then y(3) is equal to _______.
JEE Main 2020 (Online) 9th January Morning Slot
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12