1
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{n \to \infty } {\left( {{{\left( {n + 1} \right)\left( {n + 2} \right)...3n} \over {{n^{2n}}}}} \right)^{{1 \over n}}}$$ is equal to:
A
$${9 \over {{e^2}}}$$
B
$$3\,\log \,3 - 2$$
C
$${{18} \over {{e^4}}}$$
D
$${{27} \over {{e^2}}}$$
2
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$p = \mathop {\lim }\limits_{x \to {0^ + }} {\left( {1 + {{\tan }^2}\sqrt x } \right)^{{1 \over {2x}}}}$$ then $$log$$ $$p$$ is equal to :
A
$${1 \over 2}$$
B
$${1 \over 4}$$
C
$$2$$
D
$$1$$
3
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\mathop {\lim }\limits_{x \to 0} {{\left( {1 - \cos 2x} \right)\left( {3 + \cos x} \right)} \over {x\tan 4x}}$$ is equal to
A
2
B
$${1 \over 2}$$
C
4
D
3
4
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Change Language
If the function.

$$g\left( x \right) = \left\{ {\matrix{ {k\sqrt {x + 1} ,} & {0 \le x \le 3} \cr {m\,x + 2,} & {3 < x \le 5} \cr } } \right.$$

is differentiable, then the value of $$k+m$$ is :
A
$${{10} \over 3}$$
B
$$4$$
C
$$2$$
D
$${{16} \over 5}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET