Let $A = [a_{ij}]$ be a $2 \times 2$ matrix such that $a_{ij} \in \{0, 1\}$ for all $i$ and $j$. Let the random variable $X$ denote the possible values of the determinant of the matrix $A$. Then, the variance of $X$ is:
Let $ \alpha, \beta \ (\alpha \neq \beta) $ be the values of $ m $, for which the equations $ x+y+z=1 $, $ x+2y+4z=m $ and $ x+4y+10z=m^2 $ have infinitely many solutions. Then the value of $ \sum\limits_{n=1}^{10} (n^{\alpha}+n^{\beta}) $ is equal to :
Let $\mathrm{A}=\left[a_{i j}\right]$ be a matrix of order $3 \times 3$, with $a_{i j}=(\sqrt{2})^{i+j}$. If the sum of all the elements in the third row of $A^2$ is $\alpha+\beta \sqrt{2}, \alpha, \beta \in \mathbf{Z}$, then $\alpha+\beta$ is equal to :
Let $ A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} \log_5 128 & \log_4 5 \\ \log_5 8 & \log_4 25 \end{bmatrix} $. If $ A_{ij} $ is the cofactor of $ a_{ij} $, $ C_{ij} = \sum\limits_{k=1}^{2} a_k A_{jk} , 1 \leq i, j \leq 2 $, and $ C=[C_{ij}] $, then $ 8|C| $ is equal to :