Let α be a solution of $x^2 + x + 1 = 0$, and for some a and b in
$R, \begin{bmatrix} 4 & a & b \end{bmatrix} \begin{bmatrix} 1 & 16 & 13 \\ -1 & -1 & 2 \\ -2 & -14 & -8 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$. If $\frac{4}{\alpha^4} + \frac{m}{\alpha^a} + \frac{n}{\alpha^b} = 3$, then m + n is equal to _______
Let $ A = \begin{bmatrix} 2 & 2+p & 2+p+q \\ 4 & 6+2p & 8+3p+2q \\ 6 & 12+3p & 20+6p+3q \end{bmatrix} $.
If $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, $ m, n \in \mathbb{N} $, then $ m + n $ is equal to
Let the system of equations
x + 5y - z = 1
4x + 3y - 3z = 7
24x + y + λz = μ
λ, μ ∈ ℝ, have infinitely many solutions. Then the number of the solutions of this system,
if x, y, z are integers and satisfy 7 ≤ x + y + z ≤ 77, is :
Let $A$ be a $3 \times 3$ matrix such that $|\operatorname{adj}(\operatorname{adj}(\operatorname{adj} \mathrm{A}))|=81$.
If $S=\left\{n \in \mathbb{Z}:(|\operatorname{adj}(\operatorname{adj} A)|)^{\frac{(n-1)^2}{2}}=|A|^{\left(3 n^2-5 n-4\right)}\right\}$, then $\sum_\limits{n \in S}\left|A^{\left(n^2+n\right)}\right|$ is equal to :