Let a straight line $L$ pass through the point $P(2, -1, 3)$ and be perpendicular to the lines $ \frac{x - 1}{2} = \frac{y + 1}{1} = \frac{z - 3}{-2} $ and $ \frac{x - 3}{1} = \frac{y - 2}{3} = \frac{z + 2}{4} $. If the line $L$ intersects the $yz$-plane at the point $Q$, then the distance between the points $P$ and $Q$ is:
Let P be the foot of the perpendicular from the point $(1,2,2)$ on the line $\mathrm{L}: \frac{x-1}{1}=\frac{y+1}{-1}=\frac{z-2}{2}$.
Let the line $\vec{r}=(-\hat{i}+\hat{j}-2 \hat{k})+\lambda(\hat{i}-\hat{j}+\hat{k}), \lambda \in \mathbf{R}$, intersect the line L at Q . Then $2(\mathrm{PQ})^2$ is equal to :
Let $\mathrm{L}_1: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{2}$ and $\mathrm{L}_2: \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z}{1}$ be two lines.
Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $\mathrm{L}_1$, then $|5 \alpha-11 \beta-8 \gamma|$ equals :
The square of the distance of the point $ \left( \frac{15}{7}, \frac{32}{7}, 7 \right) $ from the line $ \frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} $ in the direction of the vector $ \hat{i} + 4\hat{j} + 7\hat{k} $ is: