Let $\mathrm{S}=\mathbf{N} \cup\{0\}$. Define a relation R from S to $\mathbf{R}$ by :
$$ \mathrm{R}=\left\{(x, y): \log _{\mathrm{e}} y=x \log _{\mathrm{e}}\left(\frac{2}{5}\right), x \in \mathrm{~S}, y \in \mathbf{R}\right\} . $$
Then, the sum of all the elements in the range of $R$ is equal to :
Define a relation R on the interval $ \left[0, \frac{\pi}{2}\right) $ by $ x $ R $ y $ if and only if $ \sec^2x - \tan^2y = 1 $. Then R is :
The relation $R=\{(x, y): x, y \in \mathbb{Z}$ and $x+y$ is even $\}$ is:
Let $\mathrm{A}=\left\{x \in(0, \pi)-\left\{\frac{\pi}{2}\right\}: \log _{(2 / \pi)}|\sin x|+\log _{(2 / \pi)}|\cos x|=2\right\}$ and $\mathrm{B}=\{x \geqslant 0: \sqrt{x}(\sqrt{x}-4)-3|\sqrt{x}-2|+6=0\}$. Then $\mathrm{n}(\mathrm{A} \cup \mathrm{B})$ is equal to :