1
JEE Main 2022 (Online) 25th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $$, then

A
$${b_3} - {b_2},\,{b_4} - {b_3},\,{b_5} - {b_4}$$ are in A.P. with common difference $$-$$2
B
$${1 \over {{b_3} - {b_2}}},{1 \over {{b_4} - {b_3}}},{1 \over {{b_5} - {b_4}}}$$ are in an A.P. with common difference 2
C
$${b_3} - {b_2},\,{b_4} - {b_3},\,{b_5} - {b_4}$$ are in a G.P.
D
$${1 \over {{b_3} - {b_2}}},{1 \over {{b_4} - {b_3}}},{1 \over {{b_5} - {b_4}}}$$ are in an A.P. with common difference $$-$$2
2
JEE Main 2022 (Online) 25th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $$\int\limits_0^\pi {{{{e^{\cos x}}\sin x} \over {(1 + {{\cos }^2}x)({e^{\cos x}} + {e^{ - \cos x}})}}dx} $$ is equal to:

A
$${{{\pi ^2}} \over 4}$$
B
$${{{\pi ^2}} \over 2}$$
C
$${\pi \over 4}$$
D
$${\pi \over 2}$$
3
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of the integral

$$\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {(1 + {e^x})({{\sin }^6}x + {{\cos }^6}x)}}} $$ is equal to

A
2$$\pi$$
B
0
C
$$\pi$$
D
$${\pi \over 2}$$
4
JEE Main 2022 (Online) 24th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{n^2}} \over {({n^2} + 1)(n + 1)}} + {{{n^2}} \over {({n^2} + 4)(n + 2)}} + {{{n^2}} \over {({n^2} + 9)(n + 3)}} + \,\,....\,\, + \,\,{{{n^2}} \over {({n^2} + {n^2})(n + n)}}} \right)$$ is equal to :

A
$${\pi \over 8} + {1 \over 4}{\log _e}2$$
B
$${\pi \over 4} + {1 \over 8}{\log _e}2$$
C
$${\pi \over 4} - {1 \over 8}{\log _e}2$$
D
$${\pi \over 8} + {\log _e}\sqrt 2 $$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12