If the set of all $\mathrm{a} \in \mathbf{R}-\{1\}$, for which the roots of the equation $(1-\mathrm{a}) x^2+2(\mathrm{a}-3) x+9=0$ are positive is $(-\infty,-\alpha] \cup[\beta, \gamma)$, then $2 \alpha+\beta+\gamma$ is equal to $\qquad$ .
If the equation $\mathrm{a}(\mathrm{b}-\mathrm{c}) \mathrm{x}^2+\mathrm{b}(\mathrm{c}-\mathrm{a}) \mathrm{x}+\mathrm{c}(\mathrm{a}-\mathrm{b})=0$ has equal roots, where $\mathrm{a}+\mathrm{c}=15$ and $\mathrm{b}=\frac{36}{5}$, then $a^2+c^2$ is equal to _________
The number of distinct real roots of the equation $$|x+1||x+3|-4|x+2|+5=0$$, is _______
Let $$\alpha, \beta$$ be roots of $$x^2+\sqrt{2} x-8=0$$. If $$\mathrm{U}_{\mathrm{n}}=\alpha^{\mathrm{n}}+\beta^{\mathrm{n}}$$, then $$\frac{\mathrm{U}_{10}+\sqrt{2} \mathrm{U}_9}{2 \mathrm{U}_8}$$ is equal to ________.