1
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.

Consider

$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$

$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$

Then,

A
both (S1) and (S2) are correct
B
both (S1) and (S2) are wrong
C
only (S1) is correct
D
only (S2) is correct
2
JEE Main 2022 (Online) 27th July Evening Shift
MCQ (Single Correct Answer)
+4
-1

$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :

A
$$\frac{7}{6}$$
B
$$\frac{19}{12}$$
C
$$\frac{31}{12}$$
D
$$\frac{3}{2}$$
3
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a function defined as

$$f(x)=a \sin \left(\frac{\pi[x]}{2}\right)+[2-x], a \in \mathbb{R}$$ where $$[t]$$ is the greatest integer less than or equal to $$t$$. If $$\mathop {\lim }\limits_{x \to -1 } f(x)$$ exists, then the value of $$\int\limits_{0}^{4} f(x) d x$$ is equal to

A
$$-$$1
B
$$-$$2
C
1
D
2
4
JEE Main 2022 (Online) 27th July Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $$I=\int_{\pi / 4}^{\pi / 3}\left(\frac{8 \sin x-\sin 2 x}{x}\right) d x$$. Then

A
$${\pi \over 2} < I < {{3\pi } \over 4}$$
B
$${\pi \over 5} < I < {{5\pi } \over {12}}$$
C
$${{5\pi } \over {12}} < I < {{\sqrt 2 } \over 3}\pi$$
D
$${{3\pi } \over 4} < I < \pi$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12