Let $$f(x)=2+|x|-|x-1|+|x+1|, x \in \mathbf{R}$$.
Consider
$$(\mathrm{S} 1): f^{\prime}\left(-\frac{3}{2}\right)+f^{\prime}\left(-\frac{1}{2}\right)+f^{\prime}\left(\frac{1}{2}\right)+f^{\prime}\left(\frac{3}{2}\right)=2$$
$$(\mathrm{S} 2): \int\limits_{-2}^{2} f(x) \mathrm{d} x=12$$
Then,
The area of the region enclosed by $$y \leq 4 x^{2}, x^{2} \leq 9 y$$ and $$y \leq 4$$, is equal to :
$$\int\limits_{0}^{2}\left(\left|2 x^{2}-3 x\right|+\left[x-\frac{1}{2}\right]\right) \mathrm{d} x$$, where [t] is the greatest integer function, is equal to :
Consider a curve $$y=y(x)$$ in the first quadrant as shown in the figure. Let the area $$\mathrm{A}_{1}$$ is twice the area $$\mathrm{A}_{2}$$. Then the normal to the curve perpendicular to the line $$2 x-12 y=15$$ does NOT pass through the point.