1
JEE Main 2021 (Online) 18th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let g(x) = $$\int_0^x {f(t)dt} $$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$ \le $$ f(t) $$ \le $$ 1 for all t$$\in$$ [0, 1] and 0 $$ \le $$ f(t) $$ \le $$ $${1 \over 2}$$ for all t$$\in$$ (1, 3]. The largest possible interval in which g(3) lies is :
A
$$\left[ { - 1, - {1 \over 2}} \right]$$
B
$$\left[ { - {3 \over 2}, - 1} \right]$$
C
[1, 3]
D
$$\left[ {{1 \over 3},2} \right]$$
2
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$ \to $$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt} $$, then the value of $$\int_0^1 {(F'(x) + f(x)){e^x}dx} $$ lies in the interval
A
$$\left[ {{{331} \over {360}},{{334} \over {360}}} \right]$$
B
$$\left[ {{{330} \over {360}},{{331} \over {360}}} \right]$$
C
$$\left[ {{{335} \over {360}},{{336} \over {360}}} \right]$$
D
$$\left[ {{{327} \over {360}},{{329} \over {360}}} \right]$$
3
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the integral

$$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma $$, where $$\alpha$$, $$\beta$$, $$\gamma$$ are integers and [x] denotes the greatest integer less than or equal to x, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
A
0
B
10
C
20
D
25
4
JEE Main 2021 (Online) 17th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Which of the following statements is correct for the function g($$\alpha$$) for $$\alpha$$ $$\in$$ R such that

$$g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $$
A
$$g(\alpha )$$ is a strictly increasing function
B
$$g(\alpha )$$ is an even function
C
$$g(\alpha )$$ has an inflection point at $$\alpha$$ = $$-$$$${1 \over 2}$$
D
$$g(\alpha )$$ is a strictly decreasing function
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12