This chapter is currently out of syllabus
1
AIEEE 2005
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$A = \left[ {\matrix{ 1 & 0 \cr 1 & 1 \cr } } \right]$$ and $$I = \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right],$$ then which one of the following holds for all $$n \ge 1,$$ by the principle of mathematical induction?
A
$${A^n} = nA - \left( {n - 1} \right){\rm I}$$
B
$${A^n} = {2^{n - 1}}A - \left( {n - 1} \right){\rm I}$$
C
$${A^n} = nA + \left( {n - 1} \right){\rm I}$$
D
$${A^n} = {2^{n - 1}}A + \left( {n - 1} \right){\rm I}$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$S(K)$$ $$ = 1 + 3 + 5... + \left( {2K - 1} \right) = 3 + {K^2}.$$ Then which of the following is true
A
Principle of mathematical induction can be used to prove the formula
B
$$S\left( K \right) \Rightarrow S\left( {K + 1} \right)$$
C
$$S\left( K \right) \ne S\left( {K + 1} \right)$$
D
$$S\left( 1 \right)$$ is correct
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If $${a_n} = \sqrt {7 + \sqrt {7 + \sqrt {7 + .......} } } $$ having $$n$$ radical signs then by methods of mathematical induction which is true
A
$${a_n} > 7\,\,\forall \,\,n \ge 1$$
B
$${a_n} < 7\,\,\forall \,\,n \ge 1$$
C
$${a_n} < 4\,\,\forall \,\,n \ge 1$$
D
$${a_n} > 3\,\,\forall \,\,n \ge 1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12