1
JEE Main 2019 (Online) 12th April Morning Slot
+4
-1
Let f : R $$\to$$ R be a continuously differentiable function such that f(2) = 6 and f'(2) = $${1 \over {48}}$$. If $$\int\limits_6^{f\left( x \right)} {4{t^3}} dt$$ = (x - 2)g(x), then $$\mathop {\lim }\limits_{x \to 2} g\left( x \right)$$ is equal to :
A
18
B
36
C
12
D
24
2
JEE Main 2019 (Online) 10th April Evening Slot
+4
-1
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
A
$${3^{{5 \over 3}}} - {3^{{1 \over 3}}}$$
B
$${3^{{5 \over 6}}} - {3^{{2 \over 3}}}$$
C
$${3^{{4 \over 3}}} - {3^{{1 \over 3}}}$$
D
$${3^{{7 \over 6}}} - {3^{{5 \over 6}}}$$
3
JEE Main 2019 (Online) 10th April Morning Slot
+4
-1
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$,
where [t] denotes the greatest integer function is :
A
2$$\pi$$
B
$$\pi$$
C
-2$$\pi$$
D
-$$\pi$$
4
JEE Main 2019 (Online) 10th April Morning Slot
+4
-1
Out of Syllabus
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{{(n + 1)}^{1/3}}} \over {{n^{4/3}}}} + {{{{(n + 2)}^{1/3}}} \over {{n^{4/3}}}} + ....... + {{{{(2n)}^{1/3}}} \over {{n^{4/3}}}}} \right)$$
is equal to :
A
$${4 \over 3}{\left( 2 \right)^{3/4}}$$
B
$${3 \over 4}{\left( 2 \right)^{4/3}} - {3 \over 4}$$
C
$${4 \over 3}{\left( 2 \right)^{4/3}}$$
D
$${3 \over 4}{\left( 2 \right)^{4/3}} - {4 \over 3}$$
EXAM MAP
Medical
NEETAIIMS