1
JEE Main 2019 (Online) 12th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be a continuously differentiable function such that f(2) = 6 and f'(2) = $${1 \over {48}}$$. If $$\int\limits_6^{f\left( x \right)} {4{t^3}} dt$$ = (x - 2)g(x), then $$\mathop {\lim }\limits_{x \to 2} g\left( x \right)$$ is equal to :
A
18
B
36
C
12
D
24
2
JEE Main 2019 (Online) 10th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int\limits_{\pi /6}^{\pi /3} {{{\sec }^{2/3}}} x\cos e{c^{4/3}}xdx$$ is equal to :
A
$${3^{{5 \over 3}}} - {3^{{1 \over 3}}}$$
B
$${3^{{5 \over 6}}} - {3^{{2 \over 3}}}$$
C
$${3^{{4 \over 3}}} - {3^{{1 \over 3}}}$$
D
$${3^{{7 \over 6}}} - {3^{{5 \over 6}}}$$
3
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_0^{2\pi } {\left[ {\sin 2x\left( {1 + \cos 3x} \right)} \right]} dx$$,
where [t] denotes the greatest integer function is :
A
2$$\pi $$
B
$$\pi $$
C
-2$$\pi $$
D
-$$\pi $$
4
JEE Main 2019 (Online) 10th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
$$\mathop {\lim }\limits_{n \to \infty } \left( {{{{{(n + 1)}^{1/3}}} \over {{n^{4/3}}}} + {{{{(n + 2)}^{1/3}}} \over {{n^{4/3}}}} + ....... + {{{{(2n)}^{1/3}}} \over {{n^{4/3}}}}} \right)$$
is equal to :
A
$${4 \over 3}{\left( 2 \right)^{3/4}}$$
B
$${3 \over 4}{\left( 2 \right)^{4/3}} - {3 \over 4}$$
C
$${4 \over 3}{\left( 2 \right)^{4/3}}$$
D
$${3 \over 4}{\left( 2 \right)^{4/3}} - {4 \over 3}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12