1
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
The integral $$\int\limits_0^\pi {\sqrt {1 + 4{{\sin }^2}{x \over 2} - 4\sin {x \over 2}{\mkern 1mu} } } dx$$ equals:
A
$$4\sqrt 3 - 4$$
B
$$4\sqrt 3 - 4 - {\pi \over 3}$$
C
$$\pi - 4$$
D
$${{2\pi } \over 3} - 4 - 4\sqrt 3 $$
2
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
Statement-1 : The value of the integral
$$\int\limits_{\pi /6}^{\pi /3} {{{dx} \over {1 + \sqrt {\tan \,x} }}} $$ is equal to $$\pi /6$$

Statement-2 : $$\int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b {f\left( {a + b - x} \right)} dx.$$

A
Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
B
Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1.
C
Statement- 1 is true; Statement-2 is False.
D
Statement-1 is false; Statement-2 is true.
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$ is
A
$${\pi \over 8}\log 2$$
B
$${\pi \over 2}\log 2$$
C
$$\log 2$$
D
$$\pi \log 2$$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Let $$p(x)$$ be a function defined on $$R$$ such that $$p'(x)=p'(1-x),$$ for all $$x \in \left[ {0,1} \right],p\left( 0 \right) = 1$$ and $$p(1)=41.$$ Then $$\int\limits_0^1 {p\left( x \right)dx} $$ equals :
A
$$21$$
B
$$41$$
C
$$42$$
D
$$\sqrt {41} $$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12