Binomial Theorem · Mathematics · JEE Main
MCQ (Single Correct Answer)
The remainder, when $7^{103}$ is divided by 23, is equal to:
The least value of n for which the number of integral terms in the Binomial expansion of $(\sqrt[3]{7}+\sqrt[12]{11})^n$ is 183, is :
Let the coefficients of three consecutive terms $T_r$, $T_{r+1}$ and $T_{r+2}$ in the binomial expansion of $(a + b)^{12}$ be in a G.P. and let $p$ be the number of all possible values of $r$. Let $q$ be the sum of all rational terms in the binomial expansion of $(\sqrt[4]{3}+\sqrt[3]{4})^{12}$. Then $p + q$ is equal to:
Suppose $A$ and $B$ are the coefficients of $30^{\text {th }}$ and $12^{\text {th }}$ terms respectively in the binomial expansion of $(1+x)^{2 \mathrm{n}-1}$. If $2 \mathrm{~A}=5 \mathrm{~B}$, then n is equal to:
For some $\mathrm{n} \neq 10$, let the coefficients of the 5 th, 6 th and 7 th terms in the binomial expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ be in A.P. Then the largest coefficient in the expansion of $(1+\mathrm{x})^{\mathrm{n}+4}$ is:
If in the expansion of $(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$, the coefficients of $x$ and $x^2$ are 1 and -2 , respectively, then $\mathrm{p}^2+\mathrm{q}^2$ is equal to :
Let $\alpha, \beta, \gamma$ and $\delta$ be the coefficients of $x^7, x^5, x^3$ and $x$ respectively in the expansion of
$$\begin{aligned}
& \left(x+\sqrt{x^3-1}\right)^5+\left(x-\sqrt{x^3-1}\right)^5, x>1 \text {. If } u \text { and } v \text { satisfy the equations } \\\\
& \alpha u+\beta v=18, \\\\
& \gamma u+\delta v=20,
\end{aligned}$$
then $\mathrm{u+v}$ equals :
The sum of the coefficient of $$x^{2 / 3}$$ and $$x^{-2 / 5}$$ in the binomial expansion of $$\left(x^{2 / 3}+\frac{1}{2} x^{-2 / 5}\right)^9$$ is
The coefficient of $$x^{70}$$ in $$x^2(1+x)^{98}+x^3(1+x)^{97}+x^4(1+x)^{96}+\ldots+x^{54}(1+x)^{46}$$ is $${ }^{99} \mathrm{C}_{\mathrm{p}}-{ }^{46} \mathrm{C}_{\mathrm{q}}$$. Then a possible value of $$\mathrm{p}+\mathrm{q}$$ is :
If the term independent of $$x$$ in the expansion of $$\left(\sqrt{\mathrm{a}} x^2+\frac{1}{2 x^3}\right)^{10}$$ is 105 , then $$\mathrm{a}^2$$ is equal to :
If the constant term in the expansion of $$\left(\frac{\sqrt[5]{3}}{x}+\frac{2 x}{\sqrt[3]{5}}\right)^{12}, x \neq 0$$, is $$\alpha \times 2^8 \times \sqrt[5]{3}$$, then $$25 \alpha$$ is equal to :
If the coefficients of $$x^4, x^5$$ and $$x^6$$ in the expansion of $$(1+x)^n$$ are in the arithmetic progression, then the maximum value of $$n$$ is:
The sum of all rational terms in the expansion of $$\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$$ is equal to :
in the expansion of $\left(\frac{1}{3} x^{\frac{1}{3}}+\frac{1}{2 x^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
Let $$a$$ be the sum of all coefficients in the expansion of $$\left(1-2 x+2 x^2\right)^{2023}\left(3-4 x^2+2 x^3\right)^{2024}$$ and $$b=\lim _\limits{x \rightarrow 0}\left(\frac{\int_0^x \frac{\log (1+t)}{t^{2024}+1} d t}{x^2}\right)$$. If the equation $$c x^2+d x+e=0$$ and $$2 b x^2+a x+4=0$$ have a common root, where $$c, d, e \in \mathbb{R}$$, then $$\mathrm{d}: \mathrm{c}:$$ e equals
Suppose $$2-p, p, 2-\alpha, \alpha$$ are the coefficients of four consecutive terms in the expansion of $$(1+x)^n$$. Then the value of $$p^2-\alpha^2+6 \alpha+2 p$$ equals
If $p_{1}=20$ and $p_{2}=210$, then $2(a+b+c)$ is equal to :
The coefficient of $$x^{5}$$ in the expansion of $$\left(2 x^{3}-\frac{1}{3 x^{2}}\right)^{5}$$ is :
Fractional part of the number $$\frac{4^{2022}}{15}$$ is equal to
If $$\frac{1}{n+1}{ }^{n} \mathrm{C}_{n}+\frac{1}{n}{ }^{n} \mathrm{C}_{n-1}+\ldots+\frac{1}{2}{ }^{n} \mathrm{C}_{1}+{ }^{n} \mathrm{C}_{0}=\frac{1023}{10}$$ then $$n$$ is equal to :
The sum, of the coefficients of the first 50 terms in the binomial expansion of $$(1-x)^{100}$$, is equal to
The sum of the coefficients of three consecutive terms in the binomial expansion of $$(1+\mathrm{x})^{\mathrm{n}+2}$$, which are in the ratio $$1: 3: 5$$, is equal to :
If the $$1011^{\text {th }}$$ term from the end in the binominal expansion of $$\left(\frac{4 x}{5}-\frac{5}{2 x}\right)^{2022}$$ is 1024 times $$1011^{\text {th }}$$R term from the beginning, then $$|x|$$ is equal to
Let the number $$(22)^{2022}+(2022)^{22}$$ leave the remainder $$\alpha$$ when divided by 3 and $$\beta$$ when divided by 7. Then $$\left(\alpha^{2}+\beta^{2}\right)$$ is equal to :
If the coefficients of $$x$$ and $$x^{2}$$ in $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}$$ are 4 and $$-$$5 respectively, then $$2 p+3 q$$ is equal to :
If the coefficient of $${x^7}$$ in $${\left( {ax - {1 \over {b{x^2}}}} \right)^{13}}$$ and the coefficient of $${x^{ - 5}}$$ in $${\left( {ax + {1 \over {b{x^2}}}} \right)^{13}}$$ are equal, then $${a^4}{b^4}$$ is equal to :
$$25^{190}-19^{190}-8^{190}+2^{190}$$ is divisible by :
The absolute difference of the coefficients of $$x^{10}$$ and $$x^{7}$$ in the expansion of $$\left(2 x^{2}+\frac{1}{2 x}\right)^{11}$$ is equal to :
If the coefficients of three consecutive terms in the expansion of $$(1+x)^{n}$$ are in the ratio $$1: 5: 20$$, then the coefficient of the fourth term is
If the coefficient of $${x^7}$$ in $${\left( {a{x^2} + {1 \over {2bx}}} \right)^{11}}$$ and $${x^{ - 7}}$$ in $${\left( {ax - {1 \over {3b{x^2}}}} \right)^{11}}$$ are equal, then :
Among the statements :
(S1) : $$2023^{2022}-1999^{2022}$$ is divisible by 8
(S2) : $$13(13)^{n}-12 n-13$$ is divisible by 144 for infinitely many $$n \in \mathbb{N}$$
If $${ }^{2 n} C_{3}:{ }^{n} C_{3}=10: 1$$, then the ratio $$\left(n^{2}+3 n\right):\left(n^{2}-3 n+4\right)$$ is :
If the ratio of the fifth term from the beginning to the fifth term from the end in the expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$ is $$\sqrt{6}: 1$$, then the third term from the beginning is :
If the coefficient of $$x^{15}$$ in the expansion of $$\left(\mathrm{a} x^{3}+\frac{1}{\mathrm{~b} x^{1 / 3}}\right)^{15}$$ is equal to the coefficient of $$x^{-15}$$ in the expansion of $$\left(a x^{1 / 3}-\frac{1}{b x^{3}}\right)^{15}$$, where $$a$$ and $$b$$ are positive real numbers, then for each such ordered pair $$(\mathrm{a}, \mathrm{b})$$ :
The coefficient of $${x^{301}}$$ in $${(1 + x)^{500}} + x{(1 + x)^{499}} + {x^2}{(1 + x)^{498}}\, + \,...\, + \,{x^{500}}$$ is :
Let K be the sum of the coefficients of the odd powers of $$x$$ in the expansion of $$(1+x)^{99}$$. Let $$a$$ be the middle term in the expansion of $${\left( {2 + {1 \over {\sqrt 2 }}} \right)^{200}}$$. If $${{{}^{200}{C_{99}}K} \over a} = {{{2^l}m} \over n}$$, where m and n are odd numbers, then the ordered pair $$(l,\mathrm{n})$$ is equal to
If $$a_r$$ is the coefficient of $$x^{10-r}$$ in the Binomial expansion of $$(1 + x)^{10}$$, then $$\sum\limits_{r = 1}^{10} {{r^3}{{\left( {{{{a_r}} \over {{a_{r - 1}}}}} \right)}^2}} $$ is equal to
If $${({}^{30}{C_1})^2} + 2{({}^{30}{C_2})^2} + 3{({}^{30}{C_3})^2}\, + \,...\, + \,30{({}^{30}{C_{30}})^2} = {{\alpha 60!} \over {{{(30!)}^2}}}$$ then $$\alpha$$ is equal to :
The value of $$\sum\limits_{r = 0}^{22} {{}^{22}{C_r}{}^{23}{C_r}} $$ is
$$\sum\limits_{r=1}^{20}\left(r^{2}+1\right)(r !)$$ is equal to
The remainder when $$7^{2022}+3^{2022}$$ is divided by 5 is :
The remainder when $$(2021)^{2022}+(2022)^{2021}$$ is divided by 7 is
$$\sum\limits_{\matrix{ {i,j = 0} \cr {i \ne j} \cr } }^n {{}^n{C_i}\,{}^n{C_j}} $$ is equal to
The remainder when $$(11)^{1011}+(1011)^{11}$$ is divided by 9 is
For two positive real numbers a and b such that $${1 \over {{a^2}}} + {1 \over {{b^3}}} = 4$$, then minimum value of the constant term in the expansion of $${\left( {a{x^{{1 \over 8}}} + b{x^{ - {1 \over {12}}}}} \right)^{10}}$$ is :
Let n $$\ge$$ 5 be an integer. If 9n $$-$$ 8n $$-$$ 1 = 64$$\alpha$$ and 6n $$-$$ 5n $$-$$ 1 = 25$$\beta$$, then $$\alpha$$ $$-$$ $$\beta$$ is equal to
If the constant term in the expansion of
$${\left( {3{x^3} - 2{x^2} + {5 \over {{x^5}}}} \right)^{10}}$$ is 2k.l, where l is an odd integer, then the value of k is equal to:
The term independent of x in the expansion of
$$(1 - {x^2} + 3{x^3}){\left( {{5 \over 2}{x^3} - {1 \over {5{x^2}}}} \right)^{11}},\,x \ne 0$$ is :
If
$$\sum\limits_{k = 1}^{31} {\left( {{}^{31}{C_k}} \right)\left( {{}^{31}{C_{k - 1}}} \right) - \sum\limits_{k = 1}^{30} {\left( {{}^{30}{C_k}} \right)\left( {{}^{30}{C_{k - 1}}} \right) = {{\alpha (60!)} \over {(30!)(31!)}}} } $$,
where $$\alpha$$ $$\in$$ R, then the value of 16$$\alpha$$ is equal to
The remainder when (2021)2023 is divided by 7 is :
The coefficient of x101 in the expression $${(5 + x)^{500}} + x{(5 + x)^{499}} + {x^2}{(5 + x)^{498}} + \,\,.....\,\, + \,\,{x^{500}}$$, x > 0, is
If $${1 \over {2\,.\,{3^{10}}}} + {1 \over {{2^2}\,.\,{3^9}}} + \,\,.....\,\, + \,\,{1 \over {{2^{10}}\,.\,3}} = {K \over {{2^{10}}\,.\,{3^{10}}}}$$, then the remainder when K is divided by 6 is :
The remainder when 32022 is divided by 5 is :
expansion of (21/3 + 31/4)12 is :
expansion of $${\left( {x\sin \alpha + a{{\cos \alpha } \over x}} \right)^{10}}$$ is $${{10!} \over {{{(5!)}^2}}}$$, then the value of 'a' is equal to :
than $${\left( {1 + {1 \over {{{10}^{100}}}}} \right)^{{{10}^{100}}}}$$ is ______________.
(1 $$-$$ x)101 (x2 + x + 1)100 is :
expansion of $${\left( {{3^{1/4}} + {5^{1/8}}} \right)^{60}}$$, then (n $$-$$ 1) is divisible by :
$${(1 - x + {x^3})^n} = \sum\limits_{j = 0}^{3n} {{a_j}{x^j}} $$,
then $$\sum\limits_{j = 0}^{\left[ {{{3n} \over 2}} \right]} {{a_{2j}} + 4} \sum\limits_{j = 0}^{\left[ {{{3n - 1} \over 2}} \right]} {{a_{2j}} + 1} $$ is equal to :
of $${\left( {t{x^{{1 \over 5}}} + {{{{(1 - x)}^{{1 \over {10}}}}} \over t}} \right)^{10}}$$ where x$$\in$$(0, 1) is :
-15C1 + 2.15C2 – 3.15C3 + ... - 15.15C15 + 14C1 + 14C3 + 14C5 + ...+ 14C11 is :
$${\left( {\sqrt x - {k \over {{x^2}}}} \right)^{10}}$$ is 405, then |k| equals :
$$\left\{ {{{{3^{200}}} \over 8}} \right\}$$, is equal to :
of three consecutive terms in the binomial
expansion of (1 + x)n + 5 are in the ratio
5 : 10 : 14, then the largest coefficient in this expansion is :
$${\left( {{3 \over 2}{x^2} - {1 \over {3x}}} \right)^9}$$ is k, then 18 k is equal to :
of (31/2 + 51/8)n is exactly 33, then the least value of n is :
$$\alpha $$3 + $$\beta $$2 = 4. If the maximum value of the term independent of x in
the binomial expansion of $${\left( {\alpha {x^{{1 \over 9}}} + \beta {x^{ - {1 \over 6}}}} \right)^{10}}$$ is 10k,
then k is equal to :
$${\left( {x + \sqrt {{x^2} - 1} } \right)^6} + {\left( {x - \sqrt {{x^2} - 1} } \right)^6}$$, then
(1 + x)10 + x(1 + x)9 + x2(1 + x)8 + ......+ x10 is:
49125 + 49124 + ..... + 492 + 49 + 1, is:
$$\left( {{1 \over {60}} - {{{x^8}} \over {81}}} \right).{\left( {2{x^2} - {3 \over {{x^2}}}} \right)^6}$$ is equal to :
(1 + x) (1 – x)10 (1 + x + x2)9 is :
$${\left( {\sqrt {{x^{\left( {{1 \over {1 + {{\log }_{10}}x}}} \right)}}} + {x^{{1 \over {12}}}}} \right)^6}$$ is equal to 200, and x > 1, then the value of x is :
$${\left( {x + \sqrt {{x^3} - 1} } \right)^6}$$ + $${\left( {x - \sqrt {{x^3} - 1} } \right)^6}$$, (x > 1) is equal to:
2.20C0 + 5.20C1 + 8.20C2 + 11.20C3 + ... +62.20C20 is equal to :
of $${\left( {1 + {x^{{{\log }_2}x}}} \right)^5}$$ equals 2560, then a possible value of x is -
(2$$-$$x2) .((1 + 2x + 3x2)6 + (1 $$-$$ 4x2)6) is :
$${\left( {x + \sqrt {{x^3} - 1} } \right)^5} + {\left( {x - \sqrt {{x^3} - 1} } \right)^5}$$, $$\left( {x > 1} \right)$$ is
$${\left[ {{2 \over {\sqrt {5{x^3} + 1} - \sqrt {5{x^3} - 1} }}} \right]^8} + $$ $${\left[ {{2 \over {\sqrt {5{x^3} + 1} + \sqrt {5{x^3} - 1} }}} \right]^8}$$
and m is the coefficient of xn in it, then the ordered pair (n, m) is equal to :
$${\left( {{{x + 1} \over {{x^{{2 \over 3}}} - {x^{{1 \over 3}}} + 1}} - {{x - 1} \over {x - {x^{{1 \over 2}}}}}} \right)^{10}},$$ where x $$ \ne $$ 0, 1, is :
$$\left( {{}^{21}{C_4} - {}^{10}{C_4}} \right)$$$$ + .... + \left( {{}^{21}{C_{10}} - {}^{10}{C_{10}}} \right)$$ is
if (1 + x)2016 + x(1 + x)2015 + x2(1 + x)2014 + . . . . + x2016 =
$$\sum\limits_{i = 0}^{2016} {{a_i}} \,{x^i},\,\,$$ then a17 is equal to :
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ is
$${{s_2} = \sum\limits_{j = 1}^{10} {} } j.{}^{10}{C_j}$$ and
$${{s_3} = \sum\limits_{j = 1}^{10} {{j^2}.{}^{10}{C_j}.} }$$
Statement-1 : $${{S_3} = 55 \times {2^9}}$$.
Statement-2 : $${{S_1} = 90 \times {2^8}}$$ and $${{S_2} = 10 \times {2^8}}$$.
Statement - 2 : $$\sum\limits_{r = 0}^n {\left( {r + 1} \right)\,{}^n{C_r}{x^r} = {{\left( {1 + x} \right)}^n} + nx{{\left( {1 + x} \right)}^{n - 1}}.} $$
Numerical
If $\alpha=1+\sum\limits_{r=1}^6(-3)^{r-1} \quad{ }^{12} \mathrm{C}_{2 r-1}$, then the distance of the point $(12, \sqrt{3})$ from the line $\alpha x-\sqrt{3} y+1=0$ is ________.
The sum of all rational terms in the expansion of $\left(1+2^{1 / 5}+3^{1 / 2}\right)^6$ is equal to _________.
If $\sum_\limits{r=1}^{30} \frac{r^2\left({ }^{30} C_r\right)^2}{{ }^{30} C_{r-1}}=\alpha \times 2^{29}$, then $\alpha$ is equal to _________.
If $\sum_\limits{r=0}^5 \frac{{ }^{11} C_{2 r+1}}{2 r+2}=\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}-\mathrm{n}$ is equal to __________.
The remainder when $$428^{2024}$$ is divided by 21 is __________.
If the second, third and fourth terms in the expansion of $$(x+y)^n$$ are 135, 30 and $$\frac{10}{3}$$, respectively, then $$6\left(n^3+x^2+y\right)$$ is equal to __________.
If the constant term in the expansion of $$\left(1+2 x-3 x^3\right)\left(\frac{3}{2} x^2-\frac{1}{3 x}\right)^9$$ is $$\mathrm{p}$$, then $$108 \mathrm{p}$$ is equal to ________.
Let $$a=1+\frac{{ }^2 \mathrm{C}_2}{3 !}+\frac{{ }^3 \mathrm{C}_2}{4 !}+\frac{{ }^4 \mathrm{C}_2}{5 !}+...., \mathrm{b}=1+\frac{{ }^1 \mathrm{C}_0+{ }^1 \mathrm{C}_1}{1 !}+\frac{{ }^2 \mathrm{C}_0+{ }^2 \mathrm{C}_1+{ }^2 \mathrm{C}_2}{2 !}+\frac{{ }^3 \mathrm{C}_0+{ }^3 \mathrm{C}_1+{ }^3 \mathrm{C}_2+{ }^3 \mathrm{C}_3}{3 !}+....$$ Then $$\frac{2 b}{a^2}$$ is equal to _________.
Let the coefficient of $$x^r$$ in the expansion of $$(x+3)^{n-1}+(x+3)^{n-2}(x+2)+(x+3)^{n-3}(x+2)^2+\ldots \ldots \ldots .+(x+2)^{n-1}$$ be $$\alpha_r$$. If $$\sum_\limits{r=0}^n \alpha_r=\beta^n-\gamma^n, \beta, \gamma \in \mathbb{N}$$, then the value of $$\beta^2+\gamma^2$$ equals _________.
In the expansion of $$(1+x)\left(1-x^2\right)\left(1+\frac{3}{x}+\frac{3}{x^2}+\frac{1}{x^3}\right)^5, x \neq 0$$, the sum of the coefficients of $x^3$ and $$x^{-13}$$ is equal to __________.
Let $$\alpha=\sum_\limits{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$$ and $$\beta=\sum_\limits{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$$ If $$5 \alpha=6 \beta$$, then $$n$$ equals _______.
$$\text { Number of integral terms in the expansion of }\left\{7^{\left(\frac{1}{2}\right)}+11^{\left(\frac{1}{6}\right)}\right\}^{824} \text { is equal to _________. }$$
Remainder when $$64^{32^{32}}$$ is divided by 9 is equal to ________.
$$\text { If } \frac{{ }^{11} C_1}{2}+\frac{{ }^{11} C_2}{3}+\ldots+\frac{{ }^{11} C_9}{10}=\frac{n}{m} \text { with } \operatorname{gcd}(n, m)=1 \text {, then } n+m \text { is equal to }$$ _______.
The coefficient of $$x^{2012}$$ in the expansion of $$(1-x)^{2008}\left(1+x+x^2\right)^{2007}$$ is equal to _________.
The remainder, when $$7^{103}$$ is divided by 17, is __________
Let $$\alpha$$ be the constant term in the binomial expansion of $$\left(\sqrt{x}-\frac{6}{x^{\frac{3}{2}}}\right)^{n}, n \leq 15$$. If the sum of the coefficients of the remaining terms in the expansion is 649 and the coefficient of $$x^{-n}$$ is $$\lambda \alpha$$, then $$\lambda$$ is equal to _____________.
The mean of the coefficients of $$x, x^{2}, \ldots, x^{7}$$ in the binomial expansion of $$(2+x)^{9}$$ is ___________.
The number of integral terms in the expansion of $$\left(3^{\frac{1}{2}}+5^{\frac{1}{4}}\right)^{680}$$ is equal to ___________.
The coefficient of $$x^7$$ in $${(1 - x + 2{x^3})^{10}}$$ is ___________.
Let $$[t]$$ denote the greatest integer $$\leq t$$. If the constant term in the expansion of $$\left(3 x^{2}-\frac{1}{2 x^{5}}\right)^{7}$$ is $$\alpha$$, then $$[\alpha]$$ is equal to ___________.
The largest natural number $$n$$ such that $$3^{n}$$ divides $$66 !$$ is ___________.
The coefficient of $$x^{18}$$ in the expansion of $$\left(x^{4}-\frac{1}{x^{3}}\right)^{15}$$ is __________.
Let the sixth term in the binomial expansion of $${\left( {\sqrt {{2^{{{\log }_2}\left( {10 - {3^x}} \right)}}} + \root 5 \of {{2^{(x - 2){{\log }_2}3}}} } \right)^m}$$ in the increasing powers of $$2^{(x-2) \log _{2} 3}$$, be 21 . If the binomial coefficients of the second, third and fourth terms in the expansion are respectively the first, third and fifth terms of an A.P., then the sum of the squares of all possible values of $$x$$ is __________.
If the term without $$x$$ in the expansion of $$\left(x^{\frac{2}{3}}+\frac{\alpha}{x^{3}}\right)^{22}$$ is 7315 , then $$|\alpha|$$ is equal to ___________.
The remainder, when $$19^{200}+23^{200}$$ is divided by 49 , is ___________.
expansion of $\left(\frac{4 x}{5}+\frac{5}{2 x^{2}}\right)^{9}$, is
The remainder on dividing $$5^{99}$$ by 11 is ____________.
Let $$\alpha>0$$, be the smallest number such that the expansion of $$\left(x^{\frac{2}{3}}+\frac{2}{x^{3}}\right)^{30}$$ has a term $$\beta x^{-\alpha}, \beta \in \mathbb{N}$$. Then $$\alpha$$ is equal to ___________.
Let the coefficients of three consecutive terms in the binomial expansion of $$(1+2x)^n$$ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of those three terms, is __________.
If the co-efficient of $$x^9$$ in $${\left( {\alpha {x^3} + {1 \over {\beta x}}} \right)^{11}}$$ and the co-efficient of $$x^{-9}$$ in $${\left( {\alpha x - {1 \over {\beta {x^3}}}} \right)^{11}}$$ are equal, then $$(\alpha\beta)^2$$ is equal to ___________.
The remainder when (2023)$$^{2023}$$ is divided by 35 is __________.
The constant term in the expansion of $${\left( {2x + {1 \over {{x^7}}} + 3{x^2}} \right)^5}$$ is ___________.
Let the sum of the coefficients of the first three terms in the expansion of $${\left( {x - {3 \over {{x^2}}}} \right)^n},x \ne 0.~n \in \mathbb{N}$$, be 376. Then the coefficient of $$x^4$$ is __________.
Suppose $$\sum\limits_{r = 0}^{2023} {{r^2}{}~^{2023}{C_r} = 2023 \times \alpha \times {2^{2022}}} $$. Then the value of $$\alpha$$ is ___________
$$ \text { If } \sum\limits_{k=1}^{10} K^{2}\left(10_{C_{K}}\right)^{2}=22000 L \text {, then } L \text { is equal to }$$ ________.
Let the ratio of the fifth term from the beginning to the fifth term from the end in the binomial expansion of $$\left(\sqrt[4]{2}+\frac{1}{\sqrt[4]{3}}\right)^{\mathrm{n}}$$, in the increasing powers of $$\frac{1}{\sqrt[4]{3}}$$ be $$\sqrt[4]{6}: 1$$. If the sixth term from the beginning is $$\frac{\alpha}{\sqrt[4]{3}}$$, then $$\alpha$$ is equal to _________.
Let the coefficients of the middle terms in the expansion of $$\left(\frac{1}{\sqrt{6}}+\beta x\right)^{4},(1-3 \beta x)^{2}$$ and $$\left(1-\frac{\beta}{2} x\right)^{6}, \beta>0$$, respectively form the first three terms of an A.P. If d is the common difference of this A.P. , then $$50-\frac{2 d}{\beta^{2}}$$ is equal to __________.
If $$1 + (2 + {}^{49}{C_1} + {}^{49}{C_2} + \,\,...\,\, + \,\,{}^{49}{C_{49}})({}^{50}{C_2} + {}^{50}{C_4} + \,\,...\,\, + \,\,{}^{50}{C_{50}})$$ is equal to $$2^{\mathrm{n}} \cdot \mathrm{m}$$, where $$\mathrm{m}$$ is odd, then $$\mathrm{n}+\mathrm{m}$$ is equal to __________.
Let for the $$9^{\text {th }}$$ term in the binomial expansion of $$(3+6 x)^{\mathrm{n}}$$, in the increasing powers of $$6 x$$, to be the greatest for $$x=\frac{3}{2}$$, the least value of $$\mathrm{n}$$ is $$\mathrm{n}_{0}$$. If $$\mathrm{k}$$ is the ratio of the coefficient of $$x^{6}$$ to the coefficient of $$x^{3}$$, then $$\mathrm{k}+\mathrm{n}_{0}$$ is equal to :
If the coefficients of $$x$$ and $$x^{2}$$ in the expansion of $$(1+x)^{\mathrm{p}}(1-x)^{\mathrm{q}}, \mathrm{p}, \mathrm{q} \leq 15$$, are $$-3$$ and $$-5$$ respectively, then the coefficient of $$x^{3}$$ is equal to _____________.
If the maximum value of the term independent of $$t$$ in the expansion of $$\left(\mathrm{t}^{2} x^{\frac{1}{5}}+\frac{(1-x)^{\frac{1}{10}}}{\mathrm{t}}\right)^{15}, x \geqslant 0$$, is $$\mathrm{K}$$, then $$8 \mathrm{~K}$$ is equal to ____________.
Let the coefficients of x$$-$$1 and x$$-$$3 in the expansion of $${\left( {2{x^{{1 \over 5}}} - {1 \over {{x^{{1 \over 5}}}}}} \right)^{15}},x > 0$$, be m and n respectively. If r is a positive integer such that $$m{n^2} = {}^{15}{C_r}\,.\,{2^r}$$, then the value of r is equal to __________.
The number of positive integers k such that the constant term in the binomial expansion of $${\left( {2{x^3} + {3 \over {{x^k}}}} \right)^{12}}$$, x $$\ne$$ 0 is 28 . l, where l is an odd integer, is ______________.
If the sum of the coefficients of all the positive powers of x, in the Binomial expansion of $${\left( {{x^n} + {2 \over {{x^5}}}} \right)^7}$$ is 939, then the sum of all the possible integral values of n is _________.
If the coefficient of x10 in the binomial expansion of $${\left( {{{\sqrt x } \over {{5^{{1 \over 4}}}}} + {{\sqrt 5 } \over {{x^{{1 \over 3}}}}}} \right)^{60}}$$ is $${5^k}\,.\,l$$, where l, k $$\in$$ N and l is co-prime to 5, then k is equal to _____________.
If the sum of the co-efficient of all the positive even powers of x in the binomial expansion of $${\left( {2{x^3} + {3 \over x}} \right)^{10}}$$ is $${5^{10}} - \beta \,.\,{3^9}$$, then $$\beta$$ is equal to ____________.
Let Cr denote the binomial coefficient of xr in the expansion of $${(1 + x)^{10}}$$. If for $$\alpha$$, $$\beta$$ $$\in$$ R, $${C_1} + 3.2{C_2} + 5.3{C_3} + $$ ....... upto 10 terms $$ = {{\alpha \times {2^{11}}} \over {{2^\beta } - 1}}\left( {{C_0} + {{{C_1}} \over 2} + {{{C_2}} \over 3} + \,\,.....\,\,upto\,10\,terms} \right)$$ then the value of $$\alpha$$ + $$\beta$$ is equal to ___________.
The remainder on dividing 1 + 3 + 32 + 33 + ..... + 32021 by 50 is _________.
If $${A_k} = \sum\limits_{i = 0}^9 {\left( {\matrix{ 9 \cr i \cr } } \right)\left[ {\matrix{ {12} \cr {12 - k + i} \cr } } \right] + } \sum\limits_{i = 0}^8 {\left( {\matrix{ 8 \cr i \cr } } \right)\left[ {\matrix{ {13} \cr {13 - k + i} \cr } } \right]} $$ and A4 $$-$$ A3 = 190 p, then p is equal to :
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$, where x $$\ne$$ 0, 1 is equal to ______________.
$${\left[ {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right]^{10}}$$, x $$\ne$$ 1, is equal to ____________.
$$A = \sum\limits_{k = 0}^n {{{( - 1)}^k}{}^n{C_k}\left[ {{{\left( {{1 \over 2}} \right)}^k} + {{\left( {{3 \over 4}} \right)}^k} + {{\left( {{7 \over 8}} \right)}^k} + {{\left( {{{15} \over {16}}} \right)}^k} + {{\left( {{{31} \over {32}}} \right)}^k}} \right]} $$. If
$$63A = 1 - {1 \over {{2^{30}}}}$$, then n is equal to _____________.
(Here $$\left( {\matrix{ n \cr k \cr } } \right) = {}^n{C_k}$$)
(1 + x + x2 + x3)6 in powers of x, is ______.
$${\left( {{x^m} + {1 \over {{x^2}}}} \right)^{22}}$$ is 1540, is .............
Then $${{{a_7}} \over {{a_{13}}}}$$ is equal to ______.
$${\left( {1 + {1 \over x}} \right)^n}$$ is expanded
in increasing powers of x. If three consecutive
coefficients in this expansion are in the ratio,
2 : 5 : 12, then n is equal to________.
C0 + 5.C1 + 9.C2 + .... + (101).C25 = 225.k, then k is equal to _____.
(1 + x + x2 + ....+ x2n)(1 - x + x2 - x3 + ...... + x2n) is 61, then n is equal to _______.