1
JEE Main 2021 (Online) 22th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} \over {1 + 4{\pi ^2}}},\alpha \in R} $$ where [x] is the greatest integer less than or equal to x, then the value of $$\alpha$$ is :
A
200 (1 $$-$$ e$$-$$1)
B
100 (1 $$-$$ e)
C
50 (e $$-$$ 1)
D
150 (e$$-$$1 $$-$$ 1)
2
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If [x] denotes the greatest integer less than or equal to x, then the value of the integral $$\int_{ - \pi /2}^{\pi /2} {[[x] - \sin x]dx} $$ is equal to :
A
$$-$$ $$\pi$$
B
$$\pi$$
C
0
D
1
3
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the real part of the complex number $${(1 - \cos \theta + 2i\sin \theta )^{ - 1}}$$ is $${1 \over 5}$$ for $$\theta \in (0,\pi )$$, then the value of the integral $$\int_0^\theta {\sin x} dx$$ is equal to:
A
1
B
2
C
$$-$$1
D
0
4
JEE Main 2021 (Online) 20th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$$, where $$f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right),x \in R$$. Then which one of the following is correct?
A
g(1) = g(0)
B
$$\sqrt 2 g(1) = g(0)$$
C
$$g(1) = \sqrt 2 g(0)$$
D
g(1) + g(0) = 0
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12