1
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
If $${I_n} = \int\limits_{{\pi \over 4}}^{{\pi \over 2}} {{{\cot }^n}x\,dx} $$, then :
A
$${1 \over {{I_2} + {I_4}}},{1 \over {{I_3} + {I_5}}},{1 \over {{I_4} + {I_6}}}$$ are in A.P.
B
I2 + I4, I3 + I5, I4 + I6 are in A.P.
C
$${1 \over {{I_2} + {I_4}}},{1 \over {{I_3} + {I_5}}},{1 \over {{I_4} + {I_6}}}$$ are in G.P.
D
I2 + I4, (I3 + I5)2, I4 + I6 are in G.P.
2
JEE Main 2021 (Online) 25th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
$$\mathop {\lim }\limits_{n \to \infty } \left[ {{1 \over n} + {n \over {{{(n + 1)}^2}}} + {n \over {{{(n + 2)}^2}}} + ........ + {n \over {{{(2n + 1)}^2}}}} \right]$$ is equal to :
A
$${{1 \over 2}}$$
B
$${{1 \over 3}}$$
C
1
D
$${{1 \over 4}}$$
3
JEE Main 2021 (Online) 25th February Morning Slot
MCQ (Single Correct Answer)
+4
-1
The value of $$\int\limits_{ - 1}^1 {{x^2}{e^{[{x^3}]}}} dx$$, where [ t ] denotes the greatest integer $$ \le $$ t, is :
A
$${{e + 1} \over 3}$$
B
$${{e - 1} \over {3e}}$$
C
$${1 \over {3e}}$$
D
$${{e + 1} \over {3e}}$$
4
JEE Main 2021 (Online) 24th February Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If a curve y = f(x) passes through the point (1, 2) and satisfies $$x {{dy} \over {dx}} + y = b{x^4}$$, then for what value of b, $$\int\limits_1^2 {f(x)dx = {{62} \over 5}} $$?
A
$${{31} \over 5}$$
B
10
C
5
D
$${{62} \over 5}$$
JEE Main Subjects
EXAM MAP
Joint Entrance Examination
JEE MainJEE AdvancedWB JEE
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Medical
NEET