1
JEE Main 2021 (Online) 20th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral $$\int\limits_{ - 1}^1 {{{\log }_e}(\sqrt {1 - x} + \sqrt {1 + x} )dx} $$ is equal to:
A
$${1 \over 2}{\log _e}2 + {\pi \over 4} - {3 \over 2}$$
B
$$2{\log _e}2 + {\pi \over 4} - 1$$
C
$${\log _e}2 + {\pi \over 2} - 1$$
D
$$2{\log _e}2 + {\pi \over 2} - {1 \over 2}$$
2
JEE Main 2021 (Online) 18th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let g(x) = $$\int_0^x {f(t)dt} $$, where f is continuous function in [ 0, 3 ] such that $${1 \over 3}$$ $$ \le $$ f(t) $$ \le $$ 1 for all t$$\in$$ [0, 1] and 0 $$ \le $$ f(t) $$ \le $$ $${1 \over 2}$$ for all t$$\in$$ (1, 3]. The largest possible interval in which g(3) lies is :
A
$$\left[ { - 1, - {1 \over 2}} \right]$$
B
$$\left[ { - {3 \over 2}, - 1} \right]$$
C
[1, 3]
D
$$\left[ {{1 \over 3},2} \right]$$
3
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f : R $$ \to $$ R be defined as f(x) = e$$-$$xsinx. If F : [0, 1] $$ \to $$ R is a differentiable function with that F(x) = $$\int_0^x {f(t)dt} $$, then the value of $$\int_0^1 {(F'(x) + f(x)){e^x}dx} $$ lies in the interval
A
$$\left[ {{{331} \over {360}},{{334} \over {360}}} \right]$$
B
$$\left[ {{{330} \over {360}},{{331} \over {360}}} \right]$$
C
$$\left[ {{{335} \over {360}},{{336} \over {360}}} \right]$$
D
$$\left[ {{{327} \over {360}},{{329} \over {360}}} \right]$$
4
JEE Main 2021 (Online) 17th March Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If the integral

$$\int_0^{10} {{{[\sin 2\pi x]} \over {{e^{x - [x]}}}}} dx = \alpha {e^{ - 1}} + \beta {e^{ - {1 \over 2}}} + \gamma $$, where $$\alpha$$, $$\beta$$, $$\gamma$$ are integers and [x] denotes the greatest integer less than or equal to x, then the value of $$\alpha$$ + $$\beta$$ + $$\gamma$$ is equal to :
A
0
B
10
C
20
D
25
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12