1
JEE Main 2019 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of $$\int\limits_0^{\pi /2} {{{{{\sin }^3}x} \over {\sin x + \cos x}}dx} $$ is
A
$${{\pi - 2} \over 8}$$
B
$${{\pi - 2} \over 4}$$
C
$${{\pi - 1} \over 2}$$
D
$${{\pi - 1} \over 4}$$
2
JEE Main 2019 (Online) 8th April Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $$f(x) = \int\limits_0^x {g(t)dt} $$ where g is a non-zero even function. If ƒ(x + 5) = g(x), then $$ \int\limits_0^x {f(t)dt} $$ equals-
A
5$$\int\limits_{x + 5}^5 {g(t)dt} $$
B
$$\int\limits_{x + 5}^5 {g(t)dt} $$
C
$$\int\limits_{5}^{x+5} {g(t)dt} $$
D
2$$\int\limits_{5}^{x+5} {g(t)dt} $$
3
JEE Main 2019 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
If $$f(x) = {{2 - x\cos x} \over {2 + x\cos x}}$$ and g(x) = logex, (x > 0) then the value of integral

$$\int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {g\left( {f\left( x \right)} \right)dx{\rm{ }}} $$ is
A
loge3
B
loge2
C
loge1
D
logee
4
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over {5n}}} \right)$$ is equal to :
A
tan–1 (2)
B
tan–1 (3)
C
$${\pi \over 4}$$
D
$${\pi \over 2}$$
JEE Main Subjects
EXAM MAP