1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $f:[1, \infty) \rightarrow[2, \infty)$ be a differentiable function. If $10 \int_1^1 f(\mathrm{t}) \mathrm{dt}=5 x f(x)-x^5-9$ for all $x \geqslant 1$, then the value of $f(3)$ is :
A
22
B
26
C
32
D
18
2
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Let $(a, b)$ be the point of intersection of the curve $x^2=2 y$ and the straight line $y-2 x-6=0$ in the second quadrant. Then the integral $\mathrm{I}=\int_{\mathrm{a}}^{\mathrm{b}} \frac{9 x^2}{1+5^x} \mathrm{~d} x$ is equal to :
A
27
B
18
C
24
D
21
3
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
$4 \int_0^1\left(\frac{1}{\sqrt{3+x^2}+\sqrt{1+x^2}}\right) d x-3 \log _e(\sqrt{3})$ is equal to :
A
$2-\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
B
$2+\sqrt{2}+\log _{\mathrm{e}}(1+\sqrt{2})$
C
$2+\sqrt{2}-\log _{\mathrm{e}}(1+\sqrt{2})$
D
$2-\sqrt{2}+\log _e(1+\sqrt{2})$
4
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $f(x)=\int\limits_0^x \mathrm{t}\left(\mathrm{t}^2-9 \mathrm{t}+20\right) \mathrm{dt}, 1 \leq x \leq 5$. If the range of $f$ is $[\alpha, \beta]$, then $4(\alpha+\beta)$ equals :
A

253

B

157

C

154

D

125

JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12