NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

AIEEE 2005

MCQ (Single Correct Answer)
Let $$f:R \to R$$ be a differentiable function having $$f\left( 2 \right) = 6$$,
$$f'\left( 2 \right) = \left( {{1 \over {48}}} \right)$$. Then $$\mathop {\lim }\limits_{x \to 2} \int\limits_6^{f\left( x \right)} {{{4{t^3}} \over {x - 2}}dt} $$ equals
A
$$24$$
B
$$36$$
C
$$12$$
D
$$18$$

Explanation

$$\mathop {\lim }\limits_{x \to 2} \int\limits_0^{f\left( x \right)} {{{4{t^3}} \over {x - 2}}} dt$$

$$ = \mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{f\left( x \right)} {4{t^3}dt} } \over {x - 2}}$$

Applying $$L'$$ Hospital rule

$$\mathop {\lim }\limits_{x \to 2} {{\left[ {4f{{\left( x \right)}^3}f'\left( x \right)} \right]} \over 1}$$

$$ = 4{\left( {f\left( 2 \right)} \right)^3}f'\left( 2 \right)$$

$$ = 4 \times {6^3} \times {1 \over {48}} = 18$$
2

AIEEE 2004

MCQ (Single Correct Answer)
If $$x = {e^{y + {e^y} + {e^{y + .....\infty }}}}$$ , $$x > 0,$$ then $${{{dy} \over {dx}}}$$ is
A
$${{1 + x} \over x}$$
B
$${1 \over x}$$
C
$${{1 - x} \over x}$$
D
$${x \over {1 + x}}$$

Explanation

$$x = {e^{y + {e^{y + .....\infty }}}}\,\, \Rightarrow x = {e^{y + x}}.$$

Taking log.

$$\log \,\,x = y + x$$

$$ \Rightarrow {1 \over x} = {{dy} \over {dx}} + 1$$

$$ \Rightarrow {{dy} \over {dx}} = {1 \over x} - 1 = {{1 - x} \over x}$$
3

AIEEE 2003

MCQ (Single Correct Answer)
Let $$f\left( x \right)$$ be a polynomial function of second degree. If $$f\left( 1 \right) = f\left( { - 1} \right)$$ and $$a,b,c$$ are in $$A.P, $$ then $$f'\left( a \right),f'\left( b \right),f'\left( c \right)$$ are in
A
Arithmetic -Geometric Progression
B
$$A.P$$
C
$$G.P$$
D
$$H.P$$

Explanation

$$f\left( x \right) = a{x^2} + bx + c$$

$$f\left( 1 \right) = f\left( { - 1} \right)$$

$$ \Rightarrow a + b + c = a - b + c$$

or $$b = 0$$

$$\therefore$$ $$f\left( x \right) = a{x^2} + c$$

or $$f'\left( x \right) = 2ax$$

Now $$f'\left( a \right);f'\left( b \right);$$

and $$f'\left( c \right)$$ are $$2a\left( a \right);2a\left( b \right);2a\left( c \right)$$

i.e.$$\,2{a^2},\,2ab,\,2ac.$$

$$ \Rightarrow $$ If $$a,b,c$$ are in $$A.P.$$ then

$$f'\left( a \right);f'\left( b \right)$$ and

$$f'\left( c \right)$$ are also in $$A.P.$$
4

AIEEE 2003

MCQ (Single Correct Answer)
If $$f\left( x \right) = {x^n},$$ then the value of

$$f\left( 1 \right) - {{f'\left( 1 \right)} \over {1!}} + {{f''\left( 1 \right)} \over {2!}} - {{f'''\left( 1 \right)} \over {3!}} + ..........{{{{\left( { - 1} \right)}^n}{f^n}\left( 1 \right)} \over {n!}}$$ is

A
$$1$$
B
$${{2^n}}$$
C
$${{2^n} - 1}$$
D
$$0$$

Explanation

$$f\left( x \right) = {x^n} \Rightarrow f\left( 1 \right) = 1$$

$$f'\left( x \right) = n{x^{n - 1}} \Rightarrow f'\left( 1 \right) = n$$

$$f''\left( x \right) = n\left( {n - 1} \right){x^{n - 2}}$$

$$ \Rightarrow f''\left( 1 \right) = n\left( {n - 1} \right)$$

$$\therefore$$ $${f^n}\left( x \right) = n!$$

$$ \Rightarrow {f^n}\left( 1 \right) = n!$$

$$ = 1 - {n \over {1!}} + {{n\left( {n - 1} \right)} \over {2!}}{{n\left( {n - 1} \right)\left( {n - 2} \right)} \over {3!}}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + .... + {\left( { - 1} \right)^n}{{n!} \over {n!}}$$

$$ = {}^n\,{C_0} - {}^n\,{C_1} + {}^n\,{C_2} - {}^n\,{C_3}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + ...... + {\left( { - 1} \right)^n}\,{}^n{C_n} = 0$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12