Mathematical Reasoning · Mathematics · JEE Main
MCQ (Single Correct Answer)
The statement $$(p \wedge(\sim q)) \vee((\sim p) \wedge q) \vee((\sim p) \wedge(\sim q))$$ is equivalent to _________.
The negation of the statement $$((A \wedge(B \vee C)) \Rightarrow(A \vee B)) \Rightarrow A$$ is
Among the two statements
$$(\mathrm{S} 1):(p \Rightarrow q) \wedge(p \wedge(\sim q))$$ is a contradiction and
$$(\mathrm{S} 2):(p \wedge q) \vee((\sim p) \wedge q) \vee(p \wedge(\sim q)) \vee((\sim p) \wedge(\sim q))$$ is a tautology
The converse of $$((\sim p) \wedge q) \Rightarrow r$$ is
The statement $$\sim[p \vee(\sim(p \wedge q))]$$ is equivalent to :
The negation of the statement $$(p \vee q) \wedge (q \vee ( \sim r))$$ is :
The negation of $$(p \wedge(\sim q)) \vee(\sim p)$$ is equivalent to :
Negation of $$(p \Rightarrow q) \Rightarrow(q \Rightarrow p)$$ is :
Among the statements
(S1) : $$(p \Rightarrow q) \vee((\sim p) \wedge q)$$ is a tautology
(S2) : $$(q \Rightarrow p) \Rightarrow((\sim p) \wedge q)$$ is a contradiction
Statement $$\mathrm{(P \Rightarrow Q) \wedge(R \Rightarrow Q)}$$ is logically equivalent to :
Which of the following statements is a tautology?
The negation of the expression $$q \vee \left( {( \sim \,q) \wedge p} \right)$$ is equivalent to
$$(\mathrm{S} 1)~(p \Rightarrow q) \vee(p \wedge(\sim q))$$ is a tautology
$$(\mathrm{S} 2)~((\sim p) \Rightarrow(\sim q)) \wedge((\sim p) \vee q)$$ is a contradiction.
Then
Consider the following statements:
P : I have fever
Q: I will not take medicine
$\mathrm{R}$ : I will take rest.
The statement "If I have fever, then I will take medicine and I will take rest" is equivalent to :
Among the statements :
$$(\mathrm{S} 1)~((\mathrm{p} \vee \mathrm{q}) \Rightarrow \mathrm{r}) \Leftrightarrow(\mathrm{p} \Rightarrow \mathrm{r})$$
$$(\mathrm{S} 2)~((\mathrm{p} \vee \mathrm{q}) \Rightarrow \mathrm{r}) \Leftrightarrow((\mathrm{p} \Rightarrow \mathrm{r}) \vee(\mathrm{q} \Rightarrow \mathrm{r}))$$
If $$p,q$$ and $$r$$ are three propositions, then which of the following combination of truth values of $$p,q$$ and $$r$$ makes the logical expression $$\left\{ {(p \vee q) \wedge \left( {( \sim p) \vee r} \right)} \right\} \to \left( {( \sim q) \vee r} \right)$$ false?
Let $$\Delta ,\nabla \in \{ \wedge , \vee \} $$ be such that $$\mathrm{(p \to q)\Delta (p\nabla q)}$$ is a tautology. Then
The statement $$\left( {p \wedge \left( { \sim q} \right)} \right) \Rightarrow \left( {p \Rightarrow \left( { \sim q} \right)} \right)$$ is
Let p and q be two statements. Then $$ \sim \left( {p \wedge (p \Rightarrow \, \sim q)} \right)$$ is equivalent to
The compound statement $$\left( { \sim (P \wedge Q)} \right) \vee \left( {( \sim P) \wedge Q} \right) \Rightarrow \left( {( \sim P) \wedge ( \sim Q)} \right)$$ is equivalent to
The statement $$(p \Rightarrow q) \vee(p \Rightarrow r)$$ is NOT equivalent to
The statement $$(p \wedge q) \Rightarrow(p \wedge r)$$ is equivalent to :
Let
$$\mathrm{p}$$ : Ramesh listens to music.
$$\mathrm{q}$$ : Ramesh is out of his village.
$$\mathrm{r}$$ : It is Sunday.
$$\mathrm{s}$$ : It is Saturday.
Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as
Let the operations $$*, \odot \in\{\wedge, \vee\}$$. If $$(\mathrm{p} * \mathrm{q}) \odot(\mathrm{p}\, \odot \sim \mathrm{q})$$ is a tautology, then the ordered pair $$(*, \odot)$$ is :
If the truth value of the statement $$(P \wedge(\sim R)) \rightarrow((\sim R) \wedge Q)$$ is F, then the truth value of which of the following is $$\mathrm{F}$$ ?
$$(p \wedge r) \Leftrightarrow(p \wedge(\sim q))$$ is equivalent to $$(\sim p)$$ when $$r$$ is
Negation of the Boolean expression $$p \Leftrightarrow(q \Rightarrow p)$$ is
The statement $$(\sim(\mathrm{p} \Leftrightarrow \,\sim \mathrm{q})) \wedge \mathrm{q}$$ is :
Consider the following statements:
P : Ramu is intelligent.
Q : Ramu is rich.
R : Ramu is not honest.
The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as:
Which of the following statements is a tautology ?
The conditional statement
$$((p \wedge q) \to (( \sim p) \vee r)) \vee ((( \sim p) \vee r) \to (p \wedge q))$$ is :
Negation of the Boolean statement (p $$\vee$$ q) $$\Rightarrow$$ (($$\sim$$ r) $$\vee$$ p) is equivalent to :
Let $$\Delta$$ $$\in$$ {$$\wedge$$, $$\vee$$, $$\Rightarrow$$, $$\Leftrightarrow$$} be such that (p $$\wedge$$ q) $$\Delta$$ ((p $$\vee$$ q) $$\Rightarrow$$ q) is a tautology. Then $$\Delta$$ is equal to :
Let p, q, r be three logical statements. Consider the compound statements
$${S_1}:(( \sim p) \vee q) \vee (( \sim p) \vee r)$$ and
$${S_2}:p \to (q \vee r)$$
Then, which of the following is NOT true?
Which of the following statement is a tautology?
The boolean expression $$( \sim (p \wedge q)) \vee q$$ is equivalent to :
Let r $$\in$$ {p, q, $$\sim$$p, $$\sim$$q} be such that the logical statement
r $$\vee$$ ($$\sim$$p) $$\Rightarrow$$ (p $$\wedge$$ q) $$\vee$$ r
is a tautology. Then r is equal to :
Let $$\Delta$$, $$\nabla $$ $$\in$$ {$$\wedge$$, $$\vee$$} be such that p $$\nabla$$ q $$\Rightarrow$$ ((p $$\Delta$$ q) $$\nabla$$ r) is a tautology. Then (p $$\nabla$$ q) $$\Delta$$ r is logically equivalent to :
The negation of the Boolean expression (($$\sim$$ q) $$\wedge$$ p) $$\Rightarrow$$ (($$\sim$$ p) $$\vee$$ q) is logically equivalent to :
Consider the following two propositions:
$$P1: \sim (p \to \sim q)$$
$$P2:(p \wedge \sim q) \wedge (( \sim p) \vee q)$$
If the proposition $$p \to (( \sim p) \vee q)$$ is evaluated as FALSE, then :
Consider the following statements:
A : Rishi is a judge.
B : Rishi is honest.
C : Rishi is not arrogant.
The negation of the statement "if Rishi is a judge and he is not arrogant, then he is honest" is
The number of choices for $$\Delta \in \{ \wedge , \vee , \Rightarrow , \Leftrightarrow \} $$, such that
$$(p\Delta q) \Rightarrow ((p\Delta \sim q) \vee (( \sim p)\Delta q))$$ is a tautology, is :
(S1) : (p $$\to$$ q) $$ \vee $$ ($$ \sim $$ q $$\to$$ p) is a tautology .
(S2) : (p $$ \wedge $$ $$ \sim $$ q) $$ \wedge $$ ($$\sim$$ p $$\wedge$$ q) is a fallacy.
Then :
(A) If 3 + 3 = 7 then 4 + 3 = 8
(B) If 5 + 3 = 8 then earth is flat.
(C) If both (A) and (B) are true then 5 + 6 = 17.
Then, which of the following statements is correct?
F2(A, B) = (A $$\vee$$ B) $$\vee$$ (B $$ \to $$ $$\sim$$A) be two logical expressions. Then :
$$ \sim p \wedge (p \vee q)$$ is :
(a) $$( \sim q \wedge (p \to q)) \to \sim p$$
(b) $$((p \vee q) \wedge \sim p) \to q$$
Then which of the following statements is correct?
‘‘For an integer n, if n3 – 1 is even, then n is odd.’’
The contrapositive statement of this statement is :
$$\left( {p \to \left( {q \to p} \right)} \right) \to \left( {p \to \left( {p \vee q} \right)} \right)$$ is :
‘If a function f is differentiable at a, then it is also continuous at a’, is:
$$\left( {{S_1}} \right):\left( {q \vee p} \right) \to \left( {p \leftrightarrow \sim q} \right)$$ is a tautology
$$\left( {{S_2}} \right): \,\,\sim q \wedge \left( { \sim p \leftrightarrow q} \right)$$ is a fallacy. Then:
(p $$ \wedge $$ q) $$ \to $$ ($$ \sim $$q $$ \vee $$ r) is F. Then the truth values of p, q, r are respectively :
"If I reach the station in time, then I will catch the train" is :
$$\sqrt 5 $$ is an integer or 5 is an irrational is :
p $$ \vee $$ (~p $$ \wedge $$ q) is :
P : 5 is a prime number
Q : 7 is a factor of 192
R : L.C.M. of 5 and 7 is 35
Then the truth value of which one of the following statements is true ?
[ $$ \sim $$ ( $$ \sim $$ p $$ \vee $$ q) $$ \vee $$ (p $$ \wedge $$ r)] $$ \wedge $$ ($$ \sim $$ q $$ \wedge $$ r) is equivalent to :
(p $$ \oplus $$ q) $$\wedge$$ (~ p $$ \odot $$ q) is equivalent
to p $$\wedge$$ q, where $$ \oplus , \odot \in \left\{ { \wedge , \vee } \right\}$$, then the
ordered pair $$\left( { \oplus , \odot } \right)$$ is :
$$ \sim \left( {p \vee q} \right) \vee \left( { \sim p \wedge q} \right)$$ is equvalent to :
Statement p :
The value of sin 120o can be derived by taking $$\theta = {240^o}$$ in the equation
2sin$${\theta \over 2} = \sqrt {1 + \sin \theta } - \sqrt {1 - \sin \theta } $$
Statement q :
The angles A, B, C and D of any quadrilateral ABCD satisfy the equation
cos$$\left( {{1 \over 2}\left( {A + C} \right)} \right) + \cos \left( {{1 \over 2}\left( {B + D} \right)} \right) = 0$$
Then the truth values of p and q are respectively :
‘If two numbers are not equal, then their squares are not equal’, is :
$$\left( {p \to q} \right) \to \left[ {\left( { \sim p \to q} \right) \to q} \right]$$ is :
“If the side of a square doubles, then its area increases four times”, is :
P : If 7 is an odd number, then 7 is divisible by 2.
Q : If 7 is a prime number, then 7 is an odd number
If V1 is the truth value of the contrapositive of P and V2 is the truth value of contrapositive of Q, then the ordered pair (V1 , V2) equals :
$$\left( {p \wedge \sim q} \right) \vee q \vee \left( { \sim p \wedge q} \right)$$ is equivalent to :
Statement − I : $$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$$ is a fallacy.
Statement − II :$$\left( {p \to q} \right) \leftrightarrow \left( { \sim q \to \sim p} \right)$$ is a tautology.
P : Suman is brilliant
Q : Suman is rich
R : Suman is honest
The negation of the statement,
“Suman is brilliant and dishonest if and only if Suman is rich” can be expressed as :
P : There is a rational number x ∈ S such that x > 0.
Which of the following statements is the negation of the statement P?
Statement-2 : $$ \sim \left( {p \leftrightarrow \sim q} \right)$$ is a tautology.
Statement –1: r is equivalent to either q or p.
Statement –2: r is equivalent to $$ \sim \left( {p \leftrightarrow \sim q} \right)$$
Numerical
The number of ordered triplets of the truth values of $$p, q$$ and $$r$$ such that the truth value of the statement $$(p \vee q) \wedge(p \vee r) \Rightarrow(q \vee r)$$ is True, is equal to ___________.
The maximum number of compound propositions, out of p$$\vee$$r$$\vee$$s, p$$\vee$$r$$\vee$$$$\sim$$s, p$$\vee$$$$\sim$$q$$\vee$$s, $$\sim$$p$$\vee$$$$\sim$$r$$\vee$$s, $$\sim$$p$$\vee$$$$\sim$$r$$\vee$$$$\sim$$s, $$\sim$$p$$\vee$$q$$\vee$$$$\sim$$s, q$$\vee$$r$$\vee$$$$\sim$$s, q$$\vee$$$$\sim$$r$$\vee$$$$\sim$$s, $$\sim$$p$$\vee$$$$\sim$$q$$\vee$$$$\sim$$s that can be made simultaneously true by an assignment of the truth values to p, q, r and s, is equal to __________.