Properties of Triangle · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let the area of a $\triangle P Q R$ with vertices $P(5,4), Q(-2,4)$ and $R(a, b)$ be 35 square units. If its orthocenter and centroid are $O\left(2, \frac{14}{5}\right)$ and $C(c, d)$ respectively, then $c+2 d$ is equal to
Two vertices of a triangle $$\mathrm{ABC}$$ are $$\mathrm{A}(3,-1)$$ and $$\mathrm{B}(-2,3)$$, and its orthocentre is $$\mathrm{P}(1,1)$$. If the coordinates of the point $$\mathrm{C}$$ are $$(\alpha, \beta)$$ and the centre of the of the circle circumscribing the triangle $$\mathrm{PAB}$$ is $$(\mathrm{h}, \mathrm{k})$$, then the value of $$(\alpha+\beta)+2(\mathrm{~h}+\mathrm{k})$$ equals
Let $$\left(5, \frac{a}{4}\right)$$ be the circumcenter of a triangle with vertices $$\mathrm{A}(a,-2), \mathrm{B}(a, 6)$$ and $$C\left(\frac{a}{4},-2\right)$$. Let $$\alpha$$ denote the circumradius, $$\beta$$ denote the area and $$\gamma$$ denote the perimeter of the triangle. Then $$\alpha+\beta+\gamma$$ is
In a triangle ABC, if $$\cos \mathrm{A}+2 \cos \mathrm{B}+\cos C=2$$ and the lengths of the sides opposite to the angles A and C are 3 and 7 respectively, then $$\mathrm{\cos A-\cos C}$$ is equal to
For a triangle $$ABC$$, the value of $$\cos 2A + \cos 2B + \cos 2C$$ is least. If its inradius is 3 and incentre is M, then which of the following is NOT correct?
A straight line cuts off the intercepts $$\mathrm{OA}=\mathrm{a}$$ and $$\mathrm{OB}=\mathrm{b}$$ on the positive directions of $$x$$-axis and $$y$$ axis respectively. If the perpendicular from origin $$O$$ to this line makes an angle of $$\frac{\pi}{6}$$ with positive direction of $$y$$-axis and the area of $$\triangle \mathrm{OAB}$$ is $$\frac{98}{3} \sqrt{3}$$, then $$\mathrm{a}^{2}-\mathrm{b}^{2}$$ is equal to :
The lengths of the sides of a triangle are 10 + x2, 10 + x2 and 20 $$-$$ 2x2. If for x = k, the area of the triangle is maximum, then 3k2 is equal to :
Let a, b and c be the length of sides of a triangle ABC such that $${{a + b} \over 7} = {{b + c} \over 8} = {{c + a} \over 9}$$. If r and R are the radius of incircle and radius of circumcircle of the triangle ABC, respectively, then the value of $${R \over r}$$ is equal to :
If $${{\cos A} \over \alpha } = {{\cos B} \over \beta } = {{\cos C} \over \gamma },$$ then the ordered triad ($$\alpha $$, $$\beta $$, $$\gamma $$) has a value :
$$\angle DAB = {\pi \over 6}$$ and $$\angle ABE = {\pi \over 3}$$, then the area of the $$\angle \Delta ABC$$ is :
Numerical
Let $\mathrm{A}(6,8), \mathrm{B}(10 \cos \alpha,-10 \sin \alpha)$ and $\mathrm{C}(-10 \sin \alpha, 10 \cos \alpha)$, be the vertices of a triangle. If $L(a, 9)$ and $G(h, k)$ be its orthocenter and centroid respectively, then $(5 a-3 h+6 k+100 \sin 2 \alpha)$ is equal to ___________.
In a triangle $$\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$$ and $$\cos \mathrm{A}=\frac{2}{3}$$. If $$49 \cos (3 \mathrm{C})+42=\frac{\mathrm{m}}{\mathrm{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$m+n$$ is equal to _________.
Consider a triangle $$\mathrm{ABC}$$ having the vertices $$\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$$ and $$\mathrm{C}(\gamma, \delta)$$ and angles $$\angle A B C=\frac{\pi}{6}$$ and $$\angle B A C=\frac{2 \pi}{3}$$. If the points $$\mathrm{B}$$ and $$\mathrm{C}$$ lie on the line $$y=x+4$$, then $$\alpha^2+\gamma^2$$ is equal to _______.
$x \sin A+y \sin B+z \sin C-18=0=x \sin 2 A+y \sin 2 B+z \sin 2 C-9$,
where $A, B, C$ are the angles of a triangle $A B C$, then $80\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)$
is equal to ______________.
In the figure, $$\theta_{1}+\theta_{2}=\frac{\pi}{2}$$ and $$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$$. If the area of $$\triangle \mathrm{CAB}$$ is $$2 \sqrt{3}-3$$ unit $${ }^{2}$$, when $$\frac{\theta_{2}}{\theta_{1}}$$ is the largest, then the perimeter (in unit) of $$\triangle \mathrm{CED}$$ is equal to _________.
