Differentiation · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f^{\prime}(x)=2 x f(x)+3$, with $f(1)=4$. Then $2 f(2)$ is equal to :
If $$\log _e y=3 \sin ^{-1} x$$, then $$(1-x^2) y^{\prime \prime}-x y^{\prime}$$ at $$x=\frac{1}{2}$$ is equal to
Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:
Suppose for a differentiable function $$h, h(0)=0, h(1)=1$$ and $$h^{\prime}(0)=h^{\prime}(1)=2$$. If $$g(x)=h\left(\mathrm{e}^x\right) \mathrm{e}^{h(x)}$$, then $$g^{\prime}(0)$$ is equal to:
$$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0 & , x=0 \end{array}\right. \text {, then }$$
Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to
If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :
Let $$f(x)=x^5+2 \mathrm{e}^{x / 4}$$ for all $$x \in \mathbf{R}$$. Consider a function $$g(x)$$ such that $$(g \circ f)(x)=x$$ for all $$x \in \mathbf{R}$$. Then the value of $$8 g^{\prime}(2)$$ is :
Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then
Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then
If $$f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x \end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :
$$\text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 < x<1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }$$
Suppose $$f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}$$. Then the value of $$f^{\prime}(0)$$ is equal to
For the differentiable function $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$, let $$3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$$, then $$\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$$ is equal to
Let $$f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$$. Then $$f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)$$ is equal to
If $$2 x^{y}+3 y^{x}=20$$, then $$\frac{d y}{d x}$$ at $$(2,2)$$ is equal to :
If $$y(x)=x^{x},x > 0$$, then $$y''(2)-2y'(2)$$ is equal to
Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then
Let $$y=f(x)=\sin ^{3}\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)\right)$$. Then, at x = 1,
Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that
$$f''(x)=g''(x)+6x$$
$$f'(1)=4g'(1)-3=9$$
$$f(2)=3g(2)=12$$.
Then which of the following is NOT true?
Let $$y(x) = (1 + x)(1 + {x^2})(1 + {x^4})(1 + {x^8})(1 + {x^{16}})$$. Then $$y' - y''$$ at $$x = - 1$$ is equal to
If $$f(x) = {x^3} - {x^2}f'(1) + xf''(2) - f'''(3),x \in \mathbb{R}$$, then
Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and
$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.
Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :
The value of $$\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$$ at $$x=\frac{\pi}{4}$$ is
If $${\cos ^{ - 1}}\left( {{y \over 2}} \right) = {\log _e}{\left( {{x \over 5}} \right)^5},\,|y| < 2$$, then :
Let f : R $$\to$$ R be defined as $$f(x) = {x^3} + x - 5$$. If g(x) is a function such that $$f(g(x)) = x,\forall 'x' \in R$$, then g'(63) is equal to ________________.
If $$y = {\tan ^{ - 1}}\left( {\sec {x^3} - \tan {x^3}} \right),{\pi \over 2} < {x^3} < {{3\pi } \over 2}$$, then
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
where a > b > 0, then $${{dx} \over {dy}}\,\,at\left( {{\pi \over 4},{\pi \over 4}} \right)$$ is :
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
$$\theta \in \left[ {0,2\pi } \right]$$, then $${{{d^2}y} \over {d{x^2}}}$$ at $$\theta $$ = $$\pi $$ is :
If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
$$y\sqrt {1 - {x^2}} = k - x\sqrt {1 - {y^2}} $$ where k is a constant and
$$y\left( {{1 \over 2}} \right) = - {1 \over 4}$$. Then $${{dy} \over {dx}}$$ at x = $${1 \over 2}$$, is equal to :
$${{dy} \over {d\alpha }}\,\,at\,\alpha = {{5\pi } \over 6}is$$ :
x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$ then $$dy \over dx$$ is equal to:
then (1 + loge 2x)2 $${{dy} \over {dx}}$$ is equal to :
f (3x) = f ' (x) . f '' (x), for all x $$ \in $$ R. Then :
then (x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is equal to :
$${\tan ^{ - 1}}\left( {{{6x\sqrt x } \over {1 - 9{x^3}}}} \right)$$ is $$\sqrt x .g\left( x \right)$$, then $$g\left( x \right)$$ equals
$$f\left( 1 \right) - {{f'\left( 1 \right)} \over {1!}} + {{f''\left( 1 \right)} \over {2!}} - {{f'''\left( 1 \right)} \over {3!}} + ..........{{{{\left( { - 1} \right)}^n}{f^n}\left( 1 \right)} \over {n!}}$$ is
Numerical
Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a thrice differentiable function such that $$f(0)=0, f(1)=1, f(2)=-1, f(3)=2$$ and $$f(4)=-2$$. Then, the minimum number of zeros of $$\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$$ is __________.
Let $$f(x)=\sum_\limits{k=1}^{10} k x^{k}, x \in \mathbb{R}$$. If $$2 f(2)+f^{\prime}(2)=119(2)^{\mathrm{n}}+1$$ then $$\mathrm{n}$$ is equal to ___________
If $$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$$ and $$g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$$, then the value of $$f(4)-g(4)$$ is equal to ____________.
Let $$f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in \mathbf{R}-\left\{\frac{-3}{2}\right\}$$ For $$\mathrm{n} \geq 2$$, define $$f^{\mathrm{n}}(x)=f^{1} \mathrm{o} f^{\mathrm{n}-1}(x)$$. If $$f^{5}(x)=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{b} x+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to ____________.
Let $$f:\mathbb{R}\to\mathbb{R}$$ be a differentiable function that satisfies the relation $$f(x+y)=f(x)+f(y)-1,\forall x,y\in\mathbb{R}$$. If $$f'(0)=2$$, then $$|f(-2)|$$ is equal to ___________.
For the curve $$C:\left(x^{2}+y^{2}-3\right)+\left(x^{2}-y^{2}-1\right)^{5}=0$$, the value of $$3 y^{\prime}-y^{3} y^{\prime \prime}$$, at the point $$(\alpha, \alpha)$$, $$\alpha>0$$, on C, is equal to ____________.
Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.
If $$y(x) = {\left( {{x^x}} \right)^x},\,x > 0$$, then $${{{d^2}x} \over {d{y^2}}} + 20$$ at x = 1 is equal to ____________.
Let f : R $$\to$$ R satisfy $$f(x + y) = {2^x}f(y) + {4^y}f(x)$$, $$\forall$$x, y $$\in$$ R. If f(2) = 3, then $$14.\,{{f'(4)} \over {f'(2)}}$$ is equal to ____________.
then $${{dy} \over {dx}}$$ at x = 0 is _______.