Differentiation · Mathematics · JEE Main

Start Practice

MCQ (Single Correct Answer)

1

Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a function which is differentiable at all points of its domain and satisfies the condition $x^2 f^{\prime}(x)=2 x f(x)+3$, with $f(1)=4$. Then $2 f(2)$ is equal to :

JEE Main 2025 (Online) 24th January Evening Shift
2

If $$\log _e y=3 \sin ^{-1} x$$, then $$(1-x^2) y^{\prime \prime}-x y^{\prime}$$ at $$x=\frac{1}{2}$$ is equal to

JEE Main 2024 (Online) 9th April Evening Shift
3

Let $$f(x)=a x^3+b x^2+c x+41$$ be such that $$f(1)=40, f^{\prime}(1)=2$$ and $$f^{\prime \prime}(1)=4$$. Then $$a^2+b^2+c^2$$ is equal to:

JEE Main 2024 (Online) 9th April Morning Shift
4

Suppose for a differentiable function $$h, h(0)=0, h(1)=1$$ and $$h^{\prime}(0)=h^{\prime}(1)=2$$. If $$g(x)=h\left(\mathrm{e}^x\right) \mathrm{e}^{h(x)}$$, then $$g^{\prime}(0)$$ is equal to:

JEE Main 2024 (Online) 6th April Evening Shift
5

$$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0 & , x=0 \end{array}\right. \text {, then }$$

JEE Main 2024 (Online) 6th April Morning Shift
6

Let $$f:(-\infty, \infty)-\{0\} \rightarrow \mathbb{R}$$ be a differentiable function such that $$f^{\prime}(1)=\lim _\limits{a \rightarrow \infty} a^2 f\left(\frac{1}{a}\right)$$. Then $$\lim _\limits{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^2-2 \log _e a$$ is equal to

JEE Main 2024 (Online) 6th April Morning Shift
7

If $$y(\theta)=\frac{2 \cos \theta+\cos 2 \theta}{\cos 3 \theta+4 \cos 2 \theta+5 \cos \theta+2}$$, then at $$\theta=\frac{\pi}{2}, y^{\prime \prime}+y^{\prime}+y$$ is equal to :

JEE Main 2024 (Online) 5th April Evening Shift
8

Let $$f(x)=x^5+2 \mathrm{e}^{x / 4}$$ for all $$x \in \mathbf{R}$$. Consider a function $$g(x)$$ such that $$(g \circ f)(x)=x$$ for all $$x \in \mathbf{R}$$. Then the value of $$8 g^{\prime}(2)$$ is :

JEE Main 2024 (Online) 4th April Morning Shift
9

Let $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$ be a function satisfying $$f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$$ for all $$x, y, f(y) \neq 0$$. If $$f^{\prime}(1)=2024$$, then

JEE Main 2024 (Online) 30th January Evening Shift
10

Let $$g: \mathbf{R} \rightarrow \mathbf{R}$$ be a non constant twice differentiable function such that $$\mathrm{g}^{\prime}\left(\frac{1}{2}\right)=\mathrm{g}^{\prime}\left(\frac{3}{2}\right)$$. If a real valued function $$f$$ is defined as $$f(x)=\frac{1}{2}[g(x)+g(2-x)]$$, then

JEE Main 2024 (Online) 30th January Morning Shift
11

If $$f(x)=\left|\begin{array}{ccc} 2 \cos ^4 x & 2 \sin ^4 x & 3+\sin ^2 2 x \\ 3+2 \cos ^4 x & 2 \sin ^4 x & \sin ^2 2 x \\ 2 \cos ^4 x & 3+2 \sin ^4 x & \sin ^2 2 x \end{array}\right|,$$ then $$\frac{1}{5} f^{\prime}(0)=$$ is equal to :

JEE Main 2024 (Online) 30th January Morning Shift
12

$$\text { Let } y=\log _e\left(\frac{1-x^2}{1+x^2}\right),-1 < x<1 \text {. Then at } x=\frac{1}{2} \text {, the value of } 225\left(y^{\prime}-y^{\prime \prime}\right) \text { is equal to }$$

JEE Main 2024 (Online) 29th January Evening Shift
13

Suppose $$f(x)=\frac{\left(2^x+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^2-x+1\right)}}{\left(7 x^2+3 x+1\right)^3}$$. Then the value of $$f^{\prime}(0)$$ is equal to

JEE Main 2024 (Online) 29th January Morning Shift
14

For the differentiable function $$f: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$$, let $$3 f(x)+2 f\left(\frac{1}{x}\right)=\frac{1}{x}-10$$, then $$\left|f(3)+f^{\prime}\left(\frac{1}{4}\right)\right|$$ is equal to

JEE Main 2023 (Online) 13th April Morning Shift
15

Let $$f(x)=\frac{\sin x+\cos x-\sqrt{2}}{\sin x-\cos x}, x \in[0, \pi]-\left\{\frac{\pi}{4}\right\}$$. Then $$f\left(\frac{7 \pi}{12}\right) f^{\prime \prime}\left(\frac{7 \pi}{12}\right)$$ is equal to

JEE Main 2023 (Online) 8th April Morning Shift
16

If $$2 x^{y}+3 y^{x}=20$$, then $$\frac{d y}{d x}$$ at $$(2,2)$$ is equal to :

JEE Main 2023 (Online) 6th April Morning Shift
17

If $$y(x)=x^{x},x > 0$$, then $$y''(2)-2y'(2)$$ is equal to

JEE Main 2023 (Online) 1st February Evening Shift
18

Let $$f(x) = 2x + {\tan ^{ - 1}}x$$ and $$g(x) = {\log _e}(\sqrt {1 + {x^2}} + x),x \in [0,3]$$. Then

JEE Main 2023 (Online) 1st February Morning Shift
19

Let $$y=f(x)=\sin ^{3}\left(\frac{\pi}{3}\left(\cos \left(\frac{\pi}{3 \sqrt{2}}\left(-4 x^{3}+5 x^{2}+1\right)^{\frac{3}{2}}\right)\right)\right)$$. Then, at x = 1,

JEE Main 2023 (Online) 31st January Morning Shift
20

Let $$f$$ and $$g$$ be the twice differentiable functions on $$\mathbb{R}$$ such that

$$f''(x)=g''(x)+6x$$

$$f'(1)=4g'(1)-3=9$$

$$f(2)=3g(2)=12$$.

Then which of the following is NOT true?

JEE Main 2023 (Online) 29th January Evening Shift
21

Let $$y(x) = (1 + x)(1 + {x^2})(1 + {x^4})(1 + {x^8})(1 + {x^{16}})$$. Then $$y' - y''$$ at $$x = - 1$$ is equal to

JEE Main 2023 (Online) 25th January Morning Shift
22

If $$f(x) = {x^3} - {x^2}f'(1) + xf''(2) - f'''(3),x \in \mathbb{R}$$, then

JEE Main 2023 (Online) 24th January Evening Shift
23

Let $$x(t)=2 \sqrt{2} \cos t \sqrt{\sin 2 t}$$ and

$$y(t)=2 \sqrt{2} \sin t \sqrt{\sin 2 t}, t \in\left(0, \frac{\pi}{2}\right)$$.

Then $$\frac{1+\left(\frac{d y}{d x}\right)^{2}}{\frac{d^{2} y}{d x^{2}}}$$ at $$t=\frac{\pi}{4}$$ is equal to :

JEE Main 2022 (Online) 28th July Evening Shift
24

The value of $$\log _{e} 2 \frac{d}{d x}\left(\log _{\cos x} \operatorname{cosec} x\right)$$ at $$x=\frac{\pi}{4}$$ is

JEE Main 2022 (Online) 26th July Evening Shift
25

If $${\cos ^{ - 1}}\left( {{y \over 2}} \right) = {\log _e}{\left( {{x \over 5}} \right)^5},\,|y| < 2$$, then :

JEE Main 2022 (Online) 27th June Morning Shift
26

Let f : R $$\to$$ R be defined as $$f(x) = {x^3} + x - 5$$. If g(x) is a function such that $$f(g(x)) = x,\forall 'x' \in R$$, then g'(63) is equal to ________________.

JEE Main 2022 (Online) 25th June Morning Shift
27

If $$y = {\tan ^{ - 1}}\left( {\sec {x^3} - \tan {x^3}} \right),{\pi \over 2} < {x^3} < {{3\pi } \over 2}$$, then

JEE Main 2022 (Online) 24th June Evening Shift
28
If $$y(x) = {\cot ^{ - 1}}\left( {{{\sqrt {1 + \sin x} + \sqrt {1 - \sin x} } \over {\sqrt {1 + \sin x} - \sqrt {1 - \sin x} }}} \right),x \in \left( {{\pi \over 2},\pi } \right)$$, then $${{dy} \over {dx}}$$ at $$x = {{5\pi } \over 6}$$ is :
JEE Main 2021 (Online) 27th August Evening Shift
29
Let $$f(x) = \cos \left( {2{{\tan }^{ - 1}}\sin \left( {{{\cot }^{ - 1}}\sqrt {{{1 - x} \over x}} } \right)} \right)$$, 0 < x < 1. Then :
JEE Main 2021 (Online) 26th August Morning Shift
30
The derivative of
$${\tan ^{ - 1}}\left( {{{\sqrt {1 + {x^2}} - 1} \over x}} \right)$$ with
respect to $${\tan ^{ - 1}}\left( {{{2x\sqrt {1 - {x^2}} } \over {1 - 2{x^2}}}} \right)$$ at x = $${1 \over 2}$$ is :
JEE Main 2020 (Online) 5th September Evening Slot
31
If $$\left( {a + \sqrt 2 b\cos x} \right)\left( {a - \sqrt 2 b\cos y} \right) = {a^2} - {b^2}$$

where a > b > 0, then $${{dx} \over {dy}}\,\,at\left( {{\pi \over 4},{\pi \over 4}} \right)$$ is :
JEE Main 2020 (Online) 4th September Morning Slot
32
If y2 + loge (cos2x) = y,
$$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$, then :
JEE Main 2020 (Online) 3rd September Morning Slot
33
Let ƒ and g be differentiable functions on R such that fog is the identity function. If for some a, b $$ \in $$ R, g'(a) = 5 and g(a) = b, then ƒ'(b) is equal to :
JEE Main 2020 (Online) 9th January Evening Slot
34
If $$x = 2\sin \theta - \sin 2\theta $$ and $$y = 2\cos \theta - \cos 2\theta $$,
$$\theta \in \left[ {0,2\pi } \right]$$, then $${{{d^2}y} \over {d{x^2}}}$$ at $$\theta $$ = $$\pi $$ is :
JEE Main 2020 (Online) 9th January Evening Slot
35
Let ƒ(x) = (sin(tan–1x) + sin(cot–1x))2 – 1, |x| > 1.
If $${{dy} \over {dx}} = {1 \over 2}{d \over {dx}}\left( {{{\sin }^{ - 1}}\left( {f\left( x \right)} \right)} \right)$$ and $$y\left( {\sqrt 3 } \right) = {\pi \over 6}$$, then y($${ - \sqrt 3 }$$) is equal to :
JEE Main 2020 (Online) 8th January Morning Slot
36
Let y = y(x) be a function of x satisfying

$$y\sqrt {1 - {x^2}} = k - x\sqrt {1 - {y^2}} $$ where k is a constant and

$$y\left( {{1 \over 2}} \right) = - {1 \over 4}$$. Then $${{dy} \over {dx}}$$ at x = $${1 \over 2}$$, is equal to :
JEE Main 2020 (Online) 7th January Evening Slot
37
If $$y\left( \alpha \right) = \sqrt {2\left( {{{\tan \alpha + \cot \alpha } \over {1 + {{\tan }^2}\alpha }}} \right) + {1 \over {{{\sin }^2}\alpha }}} ,\alpha \in \left( {{{3\pi } \over 4},\pi } \right)$$

$${{dy} \over {d\alpha }}\,\,at\,\alpha = {{5\pi } \over 6}is$$ :
JEE Main 2020 (Online) 7th January Morning Slot
38
Let xk + yk = ak, (a, k > 0 ) and $${{dy} \over {dx}} + {\left( {{y \over x}} \right)^{{1 \over 3}}} = 0$$, then k is:
JEE Main 2020 (Online) 7th January Morning Slot
39
The derivative of $${\tan ^{ - 1}}\left( {{{\sin x - \cos x} \over {\sin x + \cos x}}} \right)$$, with respect to $${x \over 2}$$ , where $$\left( {x \in \left( {0,{\pi \over 2}} \right)} \right)$$ is :
JEE Main 2019 (Online) 12th April Evening Slot
40
If ey + xy = e, the ordered pair $$\left( {{{dy} \over {dx}},{{{d^2}y} \over {d{x^2}}}} \right)$$ at x = 0 is equal to :
JEE Main 2019 (Online) 12th April Morning Slot
41
Let f(x) = loge(sin x), (0 < x < $$\pi $$) and g(x) = sin–1 (e–x ), (x $$ \ge $$ 0). If $$\alpha $$ is a positive real number such that a = (fog)'($$\alpha $$) and b = (fog)($$\alpha $$), then :
JEE Main 2019 (Online) 10th April Evening Slot
42
If ƒ(1) = 1, ƒ'(1) = 3, then the derivative of ƒ(ƒ(ƒ(x))) + (ƒ(x))2 at x = 1 is :
JEE Main 2019 (Online) 8th April Evening Slot
43
If $$2y = {\left( {{{\cot }^{ - 1}}\left( {{{\sqrt 3 \cos x + \sin x} \over {\cos x - \sqrt 3 \sin x}}} \right)} \right)^2}$$,

x $$ \in $$ $$\left( {0,{\pi \over 2}} \right)$$ then $$dy \over dx$$ is equal to:
JEE Main 2019 (Online) 8th April Morning Slot
44
For x > 1, if (2x)2y = 4e2x$$-$$2y,

then (1 + loge 2x)2 $${{dy} \over {dx}}$$ is equal to :
JEE Main 2019 (Online) 12th January Morning Slot
45
If  xloge(logex) $$-$$ x2 + y2 = 4(y > 0), then $${{dy} \over {dx}}$$ at x = e is equal to :
JEE Main 2019 (Online) 11th January Morning Slot
46
Let f : R $$ \to $$ R be a function such that f(x) = x3 + x2f'(1) + xf''(2) + f'''(3), x $$ \in $$ R. Then f(2) equals -
JEE Main 2019 (Online) 10th January Morning Slot
47
If   x $$=$$ 3 tan t and y $$=$$ 3 sec t, then the value of $${{{d^2}y} \over {d{x^2}}}$$ at t $$ = {\pi \over 4},$$ is :
JEE Main 2019 (Online) 9th January Evening Slot
48
If $$x = \sqrt {{2^{\cos e{c^{ - 1}}}}} $$ and $$y = \sqrt {{2^{se{c^{ - 1}}t}}} \,\,\left( {\left| t \right| \ge 1} \right),$$ then $${{dy} \over {dx}}$$ is equal to :
JEE Main 2018 (Online) 16th April Morning Slot
49
If    f(x) = sin-1 $$\left( {{{2 \times {3^x}} \over {1 + {9^x}}}} \right),$$ then f'$$\left( { - {1 \over 2}} \right)$$ equals :
JEE Main 2018 (Online) 15th April Evening Slot
50
If   x2 + y2 + sin y = 4, then the value of $${{{d^2}y} \over {d{x^2}}}$$ at the point ($$-$$2,0) is :
JEE Main 2018 (Online) 15th April Morning Slot
51
If $$f\left( x \right) = \left| {\matrix{ {\cos x} & x & 1 \cr {2\sin x} & {{x^2}} & {2x} \cr {\tan x} & x & 1 \cr } } \right|,$$ then $$\mathop {\lim }\limits_{x \to 0} {{f'\left( x \right)} \over x}$$
JEE Main 2018 (Online) 15th April Morning Slot
52
Let f be a polynomial function such that

f (3x) = f ' (x) . f '' (x), for all x $$ \in $$ R. Then :
JEE Main 2017 (Online) 9th April Morning Slot
53
If y = $${\left[ {x + \sqrt {{x^2} - 1} } \right]^{15}} + {\left[ {x - \sqrt {{x^2} - 1} } \right]^{15}},$$

then (x2 $$-$$ 1) $${{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is equal to :
JEE Main 2017 (Online) 8th April Morning Slot
54
If for $$x \in \left( {0,{1 \over 4}} \right)$$, the derivatives of

$${\tan ^{ - 1}}\left( {{{6x\sqrt x } \over {1 - 9{x^3}}}} \right)$$ is $$\sqrt x .g\left( x \right)$$, then $$g\left( x \right)$$ equals
JEE Main 2017 (Offline)
55
If $$g$$ is the inverse of a function $$f$$ and $$f'\left( x \right) = {1 \over {1 + {x^5}}},$$ then $$g'\left( x \right)$$ is equal to:
JEE Main 2014 (Offline)
56
If $$y = \sec \left( {{{\tan }^{ - 1}}x} \right),$$ then $${{{dy} \over {dx}}}$$ at $$x=1$$ is equal to :
JEE Main 2013 (Offline)
57
$${{{d^2}x} \over {d{y^2}}}$$ equals:
AIEEE 2011
58
Let $$f:\left( { - 1,1} \right) \to R$$ be a differentiable function with $$f\left( 0 \right) = - 1$$ and $$f'\left( 0 \right) = 1$$. Let $$g\left( x \right) = {\left[ {f\left( {2f\left( x \right) + 2} \right)} \right]^2}$$. Then $$g'\left( 0 \right) = $$
AIEEE 2010
59
Let $$y$$ be an implicit function of $$x$$ defined by $${x^{2x}} - 2{x^x}\cot \,y - 1 = 0$$. Then $$y'(1)$$ equals
AIEEE 2009
60
If $${x^m}.{y^n} = {\left( {x + y} \right)^{m + n}},$$ then $${{{dy} \over {dx}}}$$ is
AIEEE 2006
61
If $$x = {e^{y + {e^y} + {e^{y + .....\infty }}}}$$ , $$x > 0,$$ then $${{{dy} \over {dx}}}$$ is
AIEEE 2004
62
If $$f\left( x \right) = {x^n},$$ then the value of

$$f\left( 1 \right) - {{f'\left( 1 \right)} \over {1!}} + {{f''\left( 1 \right)} \over {2!}} - {{f'''\left( 1 \right)} \over {3!}} + ..........{{{{\left( { - 1} \right)}^n}{f^n}\left( 1 \right)} \over {n!}}$$ is

AIEEE 2003
63
Let $$f\left( x \right)$$ be a polynomial function of second degree. If $$f\left( 1 \right) = f\left( { - 1} \right)$$ and $$a,b,c$$ are in $$A.P, $$ then $$f'\left( a \right),f'\left( b \right),f'\left( c \right)$$ are in
AIEEE 2003
64
If $$y = {\left( {x + \sqrt {1 + {x^2}} } \right)^n},$$ then $$\left( {1 + {x^2}} \right){{{d^2}y} \over {d{x^2}}} + x{{dy} \over {dx}}$$ is
AIEEE 2002

Numerical

1

Let $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a thrice differentiable function such that $$f(0)=0, f(1)=1, f(2)=-1, f(3)=2$$ and $$f(4)=-2$$. Then, the minimum number of zeros of $$\left(3 f^{\prime} f^{\prime \prime}+f f^{\prime \prime \prime}\right)(x)$$ is __________.

JEE Main 2024 (Online) 4th April Evening Shift
2
If $y=\frac{(\sqrt{x}+1)\left(x^2-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^2 x-5\right) \cos ^3 x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :
JEE Main 2024 (Online) 1st February Evening Shift
3
Let $f(x)=x^3+x^2 f^{\prime}(1)+x f^{\prime \prime}(2)+f^{\prime \prime \prime}(3), x \in \mathbf{R}$. Then $f^{\prime}(10)$ is equal to ____________.
JEE Main 2024 (Online) 27th January Morning Shift
4

Let $$f(x)=\sum_\limits{k=1}^{10} k x^{k}, x \in \mathbb{R}$$. If $$2 f(2)+f^{\prime}(2)=119(2)^{\mathrm{n}}+1$$ then $$\mathrm{n}$$ is equal to ___________

JEE Main 2023 (Online) 13th April Evening Shift
5

If $$f(x)=x^{2}+g^{\prime}(1) x+g^{\prime \prime}(2)$$ and $$g(x)=f(1) x^{2}+x f^{\prime}(x)+f^{\prime \prime}(x)$$, then the value of $$f(4)-g(4)$$ is equal to ____________.

JEE Main 2023 (Online) 1st February Morning Shift
6

Let $$f^{1}(x)=\frac{3 x+2}{2 x+3}, x \in \mathbf{R}-\left\{\frac{-3}{2}\right\}$$ For $$\mathrm{n} \geq 2$$, define $$f^{\mathrm{n}}(x)=f^{1} \mathrm{o} f^{\mathrm{n}-1}(x)$$. If $$f^{5}(x)=\frac{\mathrm{a} x+\mathrm{b}}{\mathrm{b} x+\mathrm{a}}, \operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$$, then $$\mathrm{a}+\mathrm{b}$$ is equal to ____________.

JEE Main 2023 (Online) 30th January Morning Shift
7

Let $$f:\mathbb{R}\to\mathbb{R}$$ be a differentiable function that satisfies the relation $$f(x+y)=f(x)+f(y)-1,\forall x,y\in\mathbb{R}$$. If $$f'(0)=2$$, then $$|f(-2)|$$ is equal to ___________.

JEE Main 2023 (Online) 29th January Morning Shift
8

For the curve $$C:\left(x^{2}+y^{2}-3\right)+\left(x^{2}-y^{2}-1\right)^{5}=0$$, the value of $$3 y^{\prime}-y^{3} y^{\prime \prime}$$, at the point $$(\alpha, \alpha)$$, $$\alpha>0$$, on C, is equal to ____________.

JEE Main 2022 (Online) 27th July Evening Shift
9

Let f and g be twice differentiable even functions on ($$-$$2, 2) such that $$f\left( {{1 \over 4}} \right) = 0$$, $$f\left( {{1 \over 2}} \right) = 0$$, $$f(1) = 1$$ and $$g\left( {{3 \over 4}} \right) = 0$$, $$g(1) = 2$$. Then, the minimum number of solutions of $$f(x)g''(x) + f'(x)g'(x) = 0$$ in $$( - 2,2)$$ is equal to ________.

JEE Main 2022 (Online) 29th June Evening Shift
10

If $$y(x) = {\left( {{x^x}} \right)^x},\,x > 0$$, then $${{{d^2}x} \over {d{y^2}}} + 20$$ at x = 1 is equal to ____________.

JEE Main 2022 (Online) 27th June Evening Shift
11

Let f : R $$\to$$ R satisfy $$f(x + y) = {2^x}f(y) + {4^y}f(x)$$, $$\forall$$x, y $$\in$$ R. If f(2) = 3, then $$14.\,{{f'(4)} \over {f'(2)}}$$ is equal to ____________.

JEE Main 2022 (Online) 26th June Evening Shift
12
If y = y(x) is an implicit function of x such that loge(x + y) = 4xy, then $${{{d^2}y} \over {d{x^2}}}$$ at x = 0 is equal to ___________.
JEE Main 2021 (Online) 26th August Morning Shift
13
If $$f(x) = \sin \left( {{{\cos }^{ - 1}}\left( {{{1 - {2^{2x}}} \over {1 + {2^{2x}}}}} \right)} \right)$$ and its first derivative with respect to x is $$ - {b \over a}{\log _e}2$$ when x = 1, where a and b are integers, then the minimum value of | a2 $$-$$ b2 | is ____________ .
JEE Main 2021 (Online) 17th March Morning Shift
14
If y = $$\sum\limits_{k = 1}^6 {k{{\cos }^{ - 1}}\left\{ {{3 \over 5}\cos kx - {4 \over 5}\sin kx} \right\}} $$,

then $${{dy} \over {dx}}$$ at x = 0 is _______.
JEE Main 2020 (Online) 2nd September Evening Slot
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12