This chapter is currently out of syllabus
1
JEE Main 2025 (Online) 7th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of solutions of the equation

$ \cos 2\theta \cos \frac{\theta}{2} + \cos \frac{5\theta}{2} = 2\cos^3 \frac{5\theta}{2} $ in $ \left[ -\frac{\pi}{2}, \frac{\pi}{2} \right] $ is :

A

5

B

7

C

6

D

9

2
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The number of solutions of the equation

$(4-\sqrt{3}) \sin x-2 \sqrt{3} \cos ^2 x=-\frac{4}{1+\sqrt{3}}, x \in\left[-2 \pi, \frac{5 \pi}{2}\right]$ is

A
4
B
3
C
6
D
5
3
JEE Main 2025 (Online) 3rd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$ \text { The number of solutions of the equation } 2 x+3 \tan x=\pi, x \in[-2 \pi, 2 \pi]-\left\{ \pm \frac{\pi}{2}, \pm \frac{3 \pi}{2}\right\} \text { is: } $$
A
4
B
5
C
3
D
6
4
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
If $\theta \epsilon\left[-\frac{7 \pi}{6}, \frac{4 \pi}{3}\right]$, then the number of solutions of $\sqrt{3} \operatorname{cosec}^2 \theta-2(\sqrt{3}-1) \operatorname{cosec} \theta-4=0$, is equal to :
A
7
B
10
C
6
D
8
JEE Main Subjects
EXAM MAP