1
JEE Main 2021 (Online) 31st August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f be a non-negative function in [0, 1] and twice differentiable in (0, 1). If $$\int_0^x {\sqrt {1 - {{(f'(t))}^2}} dt = \int_0^x {f(t)dt} } $$, $$0 \le x \le 1$$ and f(0) = 0, then $$\mathop {\lim }\limits_{x \to 0} {1 \over {{x^2}}}\int_0^x {f(t)dt} $$ :
A
equals 0
B
equals 1
C
does not exist
D
equals $${1 \over 2}$$
2
JEE Main 2021 (Online) 27th August Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
The value of the integral $$\int\limits_0^1 {{{\sqrt x dx} \over {(1 + x)(1 + 3x)(3 + x)}}} $$ is :
A
$${\pi \over 8}\left( {1 - {{\sqrt 3 } \over 2}} \right)$$
B
$${\pi \over 4}\left( {1 - {{\sqrt 3 } \over 6}} \right)$$
C
$${\pi \over 8}\left( {1 - {{\sqrt 3 } \over 6}} \right)$$
D
$${\pi \over 4}\left( {1 - {{\sqrt 3 } \over 2}} \right)$$
3
JEE Main 2021 (Online) 27th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If $${U_n} = \left( {1 + {1 \over {{n^2}}}} \right)\left( {1 + {{{2^2}} \over {{n^2}}}} \right)^2.....\left( {1 + {{{n^2}} \over {{n^2}}}} \right)^n$$, then $$\mathop {\lim }\limits_{n \to \infty } {({U_n})^{{{ - 4} \over {{n^2}}}}}$$ is equal to :
A
$${{{e^2}} \over {16}}$$
B
$${4 \over e}$$
C
$${{16} \over {{e^2}}}$$
D
$${4 \over {{e^2}}}$$
4
JEE Main 2021 (Online) 27th August Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
$$\int\limits_6^{16} {{{{{\log }_e}{x^2}} \over {{{\log }_e}{x^2} + {{\log }_e}({x^2} - 44x + 484)}}dx} $$ is equal to :
A
6
B
8
C
5
D
10
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12