Let e1 and e2 be the eccentricities of the ellipse $\frac{x^2}{b^2} + \frac{y^2}{25} = 1$ and the hyperbola $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$, respectively. If b < 5 and e1e2 = 1, then the eccentricity of the ellipse having its axes along the coordinate axes and passing through all four foci (two of the ellipse and two of the hyperbola) is :
Let the sum of the focal distances of the point $\mathrm{P}(4,3)$ on the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be $8 \sqrt{\frac{5}{3}}$. If for H , the length of the latus rectum is $l$ and the product of the focal distances of the point P is m , then $9 l^2+6 \mathrm{~m}$ is equal to :
Let one focus of the hyperbola $\mathrm{H}: \frac{x^2}{\mathrm{a}^2}-\frac{y^2}{\mathrm{~b}^2}=1$ be at $(\sqrt{10}, 0)$ and the corresponding directrix be $x=\frac{9}{\sqrt{10}}$. If $e$ and $l$ respectively are the eccentricity and the length of the latus rectum of H , then $9\left(e^2+l\right)$ is equal to :
Let the foci of a hyperbola be $(1,14)$ and $(1,-12)$. If it passes through the point $(1,6)$, then the length of its latus-rectum is :