1
JEE Main 2025 (Online) 2nd April Morning Shift
Numerical
+4
-1
Change Language

Let [.] denote the greatest integer function. If $\int_\limits0^{e^3}\left[\frac{1}{e^{x-1}}\right] d x=\alpha-\log _e 2$, then $\alpha^3$ is equal to _________.

Your input ____
2
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language

If $ 24 \int\limits_0^{\frac{\pi}{4}} \bigg[\sin \left| 4x - \frac{\pi}{12} \right| + [2 \sin x] \bigg] dx = 2\pi + \alpha $, where $[\cdot]$ denotes the greatest integer function, then $\alpha$ is equal to ________.

Your input ____
3
JEE Main 2025 (Online) 29th January Evening Shift
Numerical
+4
-1
Change Language
If $\lim\limits _{t \rightarrow 0}\left(\int\limits_0^1(3 x+5)^t d x\right)^{\frac{1}{t}}=\frac{\alpha}{5 e}\left(\frac{8}{5}\right)^{\frac{2}{3}}$, then $\alpha$ is equal to ________________.
Your input ____
4
JEE Main 2025 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Let $f:(0, \infty) \rightarrow \mathbf{R}$ be a twice differentiable function. If for some $a\ne 0, \int\limits_0^1 f(\lambda x) \mathrm{d} \mathrm{\lambda}=a f(x), f(1)=1$ and $f(16)=\frac{1}{8}$, then $16-f^{\prime}\left(\frac{1}{16}\right)$ is equal to __________.

Your input ____
JEE Main Subjects
EXAM MAP