For a differentiable function $$f: \mathbb{R} \rightarrow \mathbb{R}$$, suppose $$f^{\prime}(x)=3 f(x)+\alpha$$, where $$\alpha \in \mathbb{R}, f(0)=1$$ and $$\lim _\limits{x \rightarrow-\infty} f(x)=7$$. Then $$9 f\left(-\log _e 3\right)$$ is equal to _________.
Let $$\alpha|x|=|y| \mathrm{e}^{x y-\beta}, \alpha, \beta \in \mathbf{N}$$ be the solution of the differential equation $$x \mathrm{~d} y-y \mathrm{~d} x+x y(x \mathrm{~d} y+y \mathrm{~d} x)=0,y(1)=2$$. Then $$\alpha+\beta$$ is equal to ________
If the solution $$y(x)$$ of the given differential equation $$\left(e^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$$ passes through the point $$\left(\frac{\pi}{2}, 0\right)$$, then the value of $$e^{y\left(\frac{\pi}{6}\right)}$$ is equal to _________.
Let $$y=y(x)$$ be the solution of the differential equation
$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$
Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.