1
JEE Main 2024 (Online) 9th April Evening Shift
Numerical
+4
-1
Change Language

For a differentiable function $$f: \mathbb{R} \rightarrow \mathbb{R}$$, suppose $$f^{\prime}(x)=3 f(x)+\alpha$$, where $$\alpha \in \mathbb{R}, f(0)=1$$ and $$\lim _\limits{x \rightarrow-\infty} f(x)=7$$. Then $$9 f\left(-\log _e 3\right)$$ is equal to _________.

Your input ____
2
JEE Main 2024 (Online) 8th April Evening Shift
Numerical
+4
-1
Change Language

Let $$\alpha|x|=|y| \mathrm{e}^{x y-\beta}, \alpha, \beta \in \mathbf{N}$$ be the solution of the differential equation $$x \mathrm{~d} y-y \mathrm{~d} x+x y(x \mathrm{~d} y+y \mathrm{~d} x)=0,y(1)=2$$. Then $$\alpha+\beta$$ is equal to ________

Your input ____
3
JEE Main 2024 (Online) 6th April Evening Shift
Numerical
+4
-1
Change Language

If the solution $$y(x)$$ of the given differential equation $$\left(e^y+1\right) \cos x \mathrm{~d} x+\mathrm{e}^y \sin x \mathrm{~d} y=0$$ passes through the point $$\left(\frac{\pi}{2}, 0\right)$$, then the value of $$e^{y\left(\frac{\pi}{6}\right)}$$ is equal to _________.

Your input ____
4
JEE Main 2024 (Online) 5th April Evening Shift
Numerical
+4
-1
Change Language

Let $$y=y(x)$$ be the solution of the differential equation

$$\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2 x}{\left(1+x^2\right)^2} y=x \mathrm{e}^{\frac{1}{\left(1+x^2\right)}} ; y(0)=0.$$

Then the area enclosed by the curve $$f(x)=y(x) \mathrm{e}^{-\frac{1}{\left(1+x^2\right)}}$$ and the line $$y-x=4$$ is ________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12