1
JEE Main 2025 (Online) 2nd April Evening Shift
Numerical
+4
-1
Change Language
Let $y=y(x)$ be the solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+2 y \sec ^2 x=2 \sec ^2 x+3 \tan x \cdot \sec ^2 x$ such that $y(0)=\frac{5}{4}$. Then $12\left(y\left(\frac{\pi}{4}\right)-\mathrm{e}^{-2}\right)$ is equal to_____________________
Your input ____
2
JEE Main 2025 (Online) 28th January Evening Shift
Numerical
+4
-1
Change Language

If $y=y(x)$ is the solution of the differential equation, $\sqrt{4-x^2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\left(\left(\sin ^{-1}\left(\frac{x}{2}\right)\right)^2-y\right) \sin ^{-1}\left(\frac{x}{2}\right),-2 \leq x \leq 2, y(2)=\frac{\pi^2-8}{4}$, then $y^2(0)$ is equal to ___________.

Your input ____
3
JEE Main 2025 (Online) 24th January Evening Shift
Numerical
+4
-1
Change Language

Let $y=y(x)$ be the solution of the differential equation

$2 \cos x \frac{\mathrm{~d} y}{\mathrm{~d} x}=\sin 2 x-4 y \sin x, x \in\left(0, \frac{\pi}{2}\right)$. If $y\left(\frac{\pi}{3}\right)=0$, then $y^{\prime}\left(\frac{\pi}{4}\right)+y\left(\frac{\pi}{4}\right)$ is equal to _________.

Your input ____
4
JEE Main 2025 (Online) 24th January Morning Shift
Numerical
+4
-1
Change Language

Let $f$ be a differentiable function such that $2(x+2)^2 f(x)-3(x+2)^2=10 \int_0^x(t+2) f(t) d t, x \geq 0$. Then $f(2)$ is equal to ________ .

Your input ____
JEE Main Subjects
EXAM MAP