Let $C$ be the circle $x^2+(y-1)^2=2, E_1$ and $E_2$ be two ellipses whose centres lie at the origin and major axes lie on x -axis and y -axis respectively. Let the straight line $x+y=3$ touch the curves $C, E_1$ and $E_2$ at $P\left(x_1, y_1\right), Q\left(x_2, y_2\right)$ and $R\left(x_3, y_3\right)$ respectively. Given that $P$ is the mid point of the line segment $Q R$ and $P Q=\frac{2 \sqrt{2}}{3}$, the value of $9\left(x_1 y_1+x_2 y_2+x_3 y_3\right)$ is equal to _______.
The absolute difference between the squares of the radii of the two circles passing through the point $(-9,4)$ and touching the lines $x+y=3$ and $x-y=3$, is equal to ________ .
Let the circle $C$ touch the line $x-y+1=0$, have the centre on the positive $x$-axis, and cut off a chord of length $\frac{4}{\sqrt{13}}$ along the line $-3 x+2 y=1$. Let H be the hyperbola $\frac{x^2}{\alpha^2}-\frac{y^2}{\beta^2}=1$, whose one of the foci is the centre of $C$ and the length of the transverse axis is the diameter of $C$. Then $2 \alpha^2+3 \beta^2$ is equal to ________.
Let the centre of a circle, passing through the points $$(0,0),(1,0)$$ and touching the circle $$x^2+y^2=9$$, be $$(h, k)$$. Then for all possible values of the coordinates of the centre $$(h, k), 4\left(h^2+k^2\right)$$ is equal to __________.