1
JEE Main 2024 (Online) 9th April Morning Shift
Numerical
+4
-1
Change Language

Let the centre of a circle, passing through the points $$(0,0),(1,0)$$ and touching the circle $$x^2+y^2=9$$, be $$(h, k)$$. Then for all possible values of the coordinates of the centre $$(h, k), 4\left(h^2+k^2\right)$$ is equal to __________.

Your input ____
2
JEE Main 2024 (Online) 30th January Evening Shift
Numerical
+4
-1
Change Language

Consider two circles $$C_1: x^2+y^2=25$$ and $$C_2:(x-\alpha)^2+y^2=16$$, where $$\alpha \in(5,9)$$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of $$C_1$$ and $$C_2$$ be $$\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$$. If the length of common chord of $$C_1$$ and $$C_2$$ is $$\beta$$, then the value of $$(\alpha \beta)^2$$ equals _______.

Your input ____
3
JEE Main 2024 (Online) 29th January Morning Shift
Numerical
+4
-1
Change Language

Equations of two diameters of a circle are $$2 x-3 y=5$$ and $$3 x-4 y=7$$. The line joining the points $$\left(-\frac{22}{7},-4\right)$$ and $$\left(-\frac{1}{7}, 3\right)$$ intersects the circle at only one point $$P(\alpha, \beta)$$. Then, $$17 \beta-\alpha$$ is equal to _________.

Your input ____
4
JEE Main 2024 (Online) 27th January Evening Shift
Numerical
+4
-1
Change Language

Consider a circle $$(x-\alpha)^2+(y-\beta)^2=50$$, where $$\alpha, \beta>0$$. If the circle touches the line $$y+x=0$$ at the point $$P$$, whose distance from the origin is $$4 \sqrt{2}$$, then $$(\alpha+\beta)^2$$ is equal to __________.

Your input ____
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12