1
JEE Main 2023 (Online) 13th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The value of $${{{e^{ - {\pi \over 4}}} + \int\limits_0^{{\pi \over 4}} {{e^{ - x}}{{\tan }^{50}}xdx} } \over {\int\limits_0^{{\pi \over 4}} {{e^{ - x}}({{\tan }^{49}}x + {{\tan }^{51}}x)dx} }}$$ is

A
51
B
50
C
25
D
49
2
JEE Main 2023 (Online) 13th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Among

(S1): $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{2}}(2+4+6+\ldots \ldots+2 n)=1$$

(S2) : $$\lim_\limits{n \rightarrow \infty} \frac{1}{n^{16}}\left(1^{15}+2^{15}+3^{15}+\ldots \ldots+n^{15}\right)=\frac{1}{16}$$

A
Only (S1) is true
B
Both (S1) and (S2) are true
C
Both (S1) and (S2) are false
D
Only (S2) is true
3
JEE Main 2023 (Online) 13th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

$$\int_\limits{0}^{\infty} \frac{6}{e^{3 x}+6 e^{2 x}+11 e^{x}+6} d x=$$

A
$$\log _{e}\left(\frac{256}{81}\right)$$
B
$$\log _{e}\left(\frac{64}{27}\right)$$
C
$$\log _{e}\left(\frac{32}{27}\right)$$
D
$$\log _{e}\left(\frac{512}{81}\right)$$
4
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$f: \mathbb{R} \rightarrow \mathbb{R}$$ be a continuous function satisfying $$\int_\limits{0}^{\frac{\pi}{2}} f(\sin 2 x) \sin x d x+\alpha \int_\limits{0}^{\frac{\pi}{4}} f(\cos 2 x) \cos x d x=0$$, then the value of $$\alpha$$ is :

A
$$-\sqrt{3}$$
B
$$\sqrt{2}$$
C
$$-\sqrt{2}$$
D
$$\sqrt{3}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12