1
JEE Main 2021 (Online) 24th February Morning Shift
+4
-1
$$\mathop {\lim }\limits_{x \to 0} {{\int\limits_0^{{x^2}} {\left( {\sin \sqrt t } \right)dt} } \over {{x^3}}}$$ is equal to :
A
$${1 \over {15}}$$
B
0
C
$${2 \over 3}$$
D
$${3 \over 2}$$
2
JEE Main 2020 (Online) 6th September Evening Slot
+4
-1
The integral $$\int\limits_1^2 {{e^x}.{x^x}\left( {2 + {{\log }_e}x} \right)} dx$$ equals :
A
e(4e + 1)
B
e(2e – 1)
C
e(4e – 1)
D
4e2 – 1
3
JEE Main 2020 (Online) 6th September Morning Slot
+4
-1
$$\mathop {\lim }\limits_{x \to 1} \left( {{{\int\limits_0^{{{\left( {x - 1} \right)}^2}} {t\cos \left( {{t^2}} \right)dt} } \over {\left( {x - 1} \right)\sin \left( {x - 1} \right)}}} \right)$$
A
is equal to 0
B
is equal to $${1 \over 2}$$
C
does not exist
D
is equal to $$- {1 \over 2}$$
4
JEE Main 2020 (Online) 6th September Morning Slot
+4
-1
If I1 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx$$ and
I2 = $$\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx$$ such
that I2 = $$\alpha$$I1 then $$\alpha$$ equals to :
A
$${{5051} \over {5050}}$$
B
$${{5050} \over {5051}}$$
C
$${{5050} \over {5049}}$$
D
$${{5049} \over {5050}}$$
EXAM MAP
Medical
NEET