In a triangle $$\mathrm{ABC}, \mathrm{BC}=7, \mathrm{AC}=8, \mathrm{AB}=\alpha \in \mathrm{N}$$ and $$\cos \mathrm{A}=\frac{2}{3}$$. If $$49 \cos (3 \mathrm{C})+42=\frac{\mathrm{m}}{\mathrm{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then $$m+n$$ is equal to _________.
Consider a triangle $$\mathrm{ABC}$$ having the vertices $$\mathrm{A}(1,2), \mathrm{B}(\alpha, \beta)$$ and $$\mathrm{C}(\gamma, \delta)$$ and angles $$\angle A B C=\frac{\pi}{6}$$ and $$\angle B A C=\frac{2 \pi}{3}$$. If the points $$\mathrm{B}$$ and $$\mathrm{C}$$ lie on the line $$y=x+4$$, then $$\alpha^2+\gamma^2$$ is equal to _______.
$x \sin A+y \sin B+z \sin C-18=0=x \sin 2 A+y \sin 2 B+z \sin 2 C-9$,
where $A, B, C$ are the angles of a triangle $A B C$, then $80\left(\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2}\right)$
is equal to ______________.
In the figure, $$\theta_{1}+\theta_{2}=\frac{\pi}{2}$$ and $$\sqrt{3}(\mathrm{BE})=4(\mathrm{AB})$$. If the area of $$\triangle \mathrm{CAB}$$ is $$2 \sqrt{3}-3$$ unit $${ }^{2}$$, when $$\frac{\theta_{2}}{\theta_{1}}$$ is the largest, then the perimeter (in unit) of $$\triangle \mathrm{CED}$$ is equal to _________.