1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
$$\int\limits_0^\pi {\left[ {\cot x} \right]dx,} $$ where $$\left[ . \right]$$ denotes the greatest integer function, is equal to:
A
$$1$$
B
$$-1$$
C
$$ - {\pi \over 2}$$
D
$$ {\pi \over 2}$$
2
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$F\left( x \right) = f\left( x \right) + f\left( {{1 \over x}} \right),$$ where $$f\left( x \right) = \int\limits_l^x {{{\log t} \over {1 + t}}dt,} $$ Then $$F(e)$$ equals
A
$$1$$
B
$$2$$
C
$$1/2$$
D
$$0$$
3
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
The solution for $$x$$ of the equation $$\int\limits_{\sqrt 2 }^x {{{dt} \over {t\sqrt {{t^2} - 1} }} = {\pi \over 2}} $$ is
A
$${{\sqrt 3 } \over 2}$$
B
$$2\sqrt 2 $$
C
$$2$$
D
None
4
AIEEE 2007
MCQ (Single Correct Answer)
+4
-1
Let $$I = \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx} .$$ Then which one of the following is true?
A
$$1 > {2 \over 3}$$ and $$J > 2$$
B
$$1 < {2 \over 3}$$ and $$J < 2$$
C
$$1 < {2 \over 3}$$ and $$J > 2$$
D
$$1 > {2 \over 3}$$ and $$J < 2$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12