Vector Algebra · Mathematics · JEE Main
MCQ (Single Correct Answer)
Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is:
Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+7 \hat{j}+3 \hat{k}$. Let $\mathrm{L}_1 : \overrightarrow{\mathrm{r}}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda \vec{a}, \mathrm{\lambda} \in \mathbf{R}$ and $\mathrm{L}_2: \overrightarrow{\mathrm{r}}=(\hat{j}+\hat{k})+\mu \vec{b}, \mu \in \mathrm{R}$ be two lines. If the line $\mathrm{L}_3$ passes through the point of intersection of $\mathrm{L}_1$ and $L_y$ and is parallel to $\vec{a}+\vec{b}$, then $L_3$ passes through the point :
Let $ \vec{a} = 2\hat{i} - \hat{j} + 3\hat{k}, \ \vec{b} = 3\hat{i} - 5\hat{j} + \hat{k} $ and $ \vec{c} $ be a vector such that $ \vec{a} \times \vec{c} = \vec{a} \times \vec{b} = \vec{c} \times \vec{b} $ and $ (\vec{a} + \vec{c}) \cdot (\vec{b} + \vec{c}) = 168 $. Then the maximum value of $|\vec{c}|^2$ is :
If the components of $\vec{a}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$ along and perpendicular to $\vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ respectively, are $\frac{16}{11}(3 \hat{i}+\hat{j}-\hat{k})$ and $\frac{1}{11}(-4 \hat{i}-5 \hat{j}-17 \hat{k})$, then $\alpha^2+\beta^2+\gamma^2$ is equal to :
Let the position vectors of three vertices of a triangle be $4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r}$ and $2 \vec{p}-\vec{q}+2 \vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p}+\vec{q}+\vec{r}}{4}$ and $\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}$ respectively, then $\alpha+2 \beta+5 \gamma$ is equal to :
Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :
Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}$ be three vectors such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}$. If the vector $\vec{C}$ is perpendicular to $\vec{b}$ and $\vec{a} \cdot \vec{c}=5$, then $|\vec{c}|$ is equal to
Let the point A divide the line segment joining the points $\mathrm{P}(-1,-1,2)$ and $\mathrm{Q}(5,5,10)$ internally in the ratio $r: 1(r>0)$. If O is the origin and $(\overrightarrow{\mathrm{OQ}} \cdot \overrightarrow{\mathrm{OA}})-\frac{1}{5}|\overrightarrow{\mathrm{OP}} \times \overrightarrow{\mathrm{OA}}|^2=10$, then the value of r is :
Let the position vectors of the vertices $\mathrm{A}, \mathrm{B}$ and C of a tetrahedron ABCD be $\hat{\mathbf{i}}+2 \hat{\mathbf{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+3 \hat{\mathrm{j}}-2 \hat{k}$ and $2 \hat{i}+\hat{j}-\hat{k}$ respectively. The altitude from the vertex $D$ to the opposite face $A B C$ meets the median line segment through $A$ of the triangle $A B C$ at the point $E$. If the length of $A D$ is $\frac{\sqrt{110}}{3}$ and the volume of the tetrahedron is $\frac{\sqrt{805}}{6 \sqrt{2}}$, then the position vector of E is
Let the arc $A C$ of a circle subtend a right angle at the centre $O$. If the point $B$ on the arc $A C$, divides the arc $A C$ such that $\frac{\text { length of } \operatorname{arc} A B}{\text { length of } \operatorname{arc} B C}=\frac{1}{5}$, and $\overrightarrow{O C}=\alpha \overrightarrow{O A}+\beta \overrightarrow{O B}$, then $\alpha+\sqrt{2}(\sqrt{3}-1) \beta$ is equal to
Let $\vec{a}$ and $\vec{b}$ be two unit vectors such that the angle between them is $\frac{\pi}{3}$. If $\lambda \vec{a}+2 \vec{b}$ and $3 \vec{a}-\lambda \vec{b}$ are perpendicular to each other, then the number of values of $\lambda$ in $[-1,3]$ is :
Between the following two statements:
Statement I : Let $$\vec{a}=\hat{i}+2 \hat{j}-3 \hat{k}$$ and $$\vec{b}=2 \hat{i}+\hat{j}-\hat{k}$$. Then the vector $$\vec{r}$$ satisfying $$\vec{a} \times \vec{r}=\vec{a} \times \vec{b}$$ and $$\vec{a} \cdot \vec{r}=0$$ is of magnitude $$\sqrt{10}$$.
Statement II : In a triangle $$A B C, \cos 2 A+\cos 2 B+\cos 2 C \geq-\frac{3}{2}$$.
Let $$\vec{a}=2 \hat{i}+\alpha \hat{j}+\hat{k}, \vec{b}=-\hat{i}+\hat{k}, \vec{c}=\beta \hat{j}-\hat{k}$$, where $$\alpha$$ and $$\beta$$ are integers and $$\alpha \beta=-6$$. Let the values of the ordered pair $$(\alpha, \beta)$$, for which the area of the parallelogram of diagonals $$\vec{a}+\vec{b}$$ and $$\vec{b}+\vec{c}$$ is $$\frac{\sqrt{21}}{2}$$, be $$\left(\alpha_1, \beta_1\right)$$ and $$\left(\alpha_2, \beta_2\right)$$. Then $$\alpha_1^2+\beta_1^2-\alpha_2 \beta_2$$ is equal to
Let three vectors ,$$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+4 \hat{j}+2 \hat{k}, \overrightarrow{\mathrm{b}}=5 \hat{i}+3 \hat{j}+4 \hat{k}, \overrightarrow{\mathrm{c}}=x \hat{i}+y \hat{j}+z \hat{k}$$ form a triangle such that $$\vec{c}=\vec{a}-\vec{b}$$ and the area of the triangle is $$5 \sqrt{6}$$. If $$\alpha$$ is a positive real number, then $$|\vec{c}|^2$$ is equal to:
Let $$\overrightarrow{O A}=2 \vec{a}, \overrightarrow{O B}=6 \vec{a}+5 \vec{b}$$ and $$\overrightarrow{O C}=3 \vec{b}$$, where $$O$$ is the origin. If the area of the parallelogram with adjacent sides $$\overrightarrow{O A}$$ and $$\overrightarrow{O C}$$ is 15 sq. units, then the area (in sq. units) of the quadrilateral $$O A B C$$ is equal to:
Let $$\overrightarrow{\mathrm{a}}=4 \hat{i}-\hat{j}+\hat{k}, \overrightarrow{\mathrm{b}}=11 \hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{\mathrm{c}}$$ be a vector such that $$(\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{c}} \times(-2 \overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}})$$. If $$(2 \vec{a}+3 \vec{b}) \cdot \vec{c}=1670$$, then $$|\vec{c}|^2$$ is equal to:
Let $$\overrightarrow{\mathrm{a}}=\hat{i}+2 \hat{j}+3 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}+3 \hat{j}-5 \hat{k}$$ and $$\overrightarrow{\mathrm{c}}=3 \hat{i}-\hat{j}+\lambda \hat{k}$$ be three vectors. Let $$\overrightarrow{\mathrm{r}}$$ be a unit vector along $$\vec{b}+\vec{c}$$. If $$\vec{r} \cdot \vec{a}=3$$, then $$3 \lambda$$ is equal to:
The set of all $$\alpha$$, for which the vectors $$\vec{a}=\alpha t \hat{i}+6 \hat{j}-3 \hat{k}$$ and $$\vec{b}=t \hat{i}-2 \hat{j}-2 \alpha t \hat{k}$$ are inclined at an obtuse angle for all $$t \in \mathbb{R}$$, is
Let $$\vec{a}=2 \hat{i}+\hat{j}-\hat{k}, \vec{b}=((\vec{a} \times(\hat{i}+\hat{j})) \times \hat{i}) \times \hat{i}$$. Then the square of the projection of $$\vec{a}$$ on $$\vec{b}$$ is:
Let $$\overrightarrow{\mathrm{a}}=6 \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+\hat{j}$$. If $$\overrightarrow{\mathrm{c}}$$ is a is vector such that $$|\overrightarrow{\mathrm{c}}| \geq 6, \overrightarrow{\mathrm{a}} \cdot \overrightarrow{\mathrm{c}}=6|\overrightarrow{\mathrm{c}}|,|\overrightarrow{\mathrm{c}}-\overrightarrow{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$\vec{a} \times \vec{b}$$ and $$\vec{c}$$ is $$60^{\circ}$$, then $$|(\vec{a} \times \vec{b}) \times \vec{c}|$$ is equal to:
Let $$\vec{a}=2 \hat{i}+5 \hat{j}-\hat{k}, \vec{b}=2 \hat{i}-2 \hat{j}+2 \hat{k}$$ and $$\vec{c}$$ be three vectors such that $$(\vec{c}+\hat{i}) \times(\vec{a}+\vec{b}+\hat{i})=\vec{a} \times(\vec{c}+\hat{i})$$. If $$\vec{a} \cdot \vec{c}=-29$$, then $$\vec{c} \cdot(-2 \hat{i}+\hat{j}+\hat{k})$$ is equal to:
Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:
If $$\mathrm{A}(1,-1,2), \mathrm{B}(5,7,-6), \mathrm{C}(3,4,-10)$$ and $$\mathrm{D}(-1,-4,-2)$$ are the vertices of a quadrilateral ABCD, then its area is :
For $$\lambda>0$$, let $$\theta$$ be the angle between the vectors $$\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. If the vectors $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ are mutually perpendicular, then the value of (14 cos $$\theta)^2$$ is equal to
Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$$. If $$\vec{d}$$ is the unit vector in the direction of $$\vec{b}+\vec{c}$$ such that $$\vec{a} \cdot \vec{d}=1$$, then $$(\vec{a} \times \vec{b}) \cdot \vec{c}$$ is equal to
Let a unit vector which makes an angle of $$60^{\circ}$$ with $$2 \hat{i}+2 \hat{j}-\hat{k}$$ and an angle of $$45^{\circ}$$ with $$\hat{i}-\hat{k}$$ be $$\vec{C}$$. Then $$\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$$ is:
$\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to :
Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to
The distance of the point $$Q(0,2,-2)$$ form the line passing through the point $$P(5,-4, 3)$$ and perpendicular to the lines $$\vec{r}=(-3 \hat{i}+2 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+5 \hat{k}), \lambda \in \mathbb{R}$$ and $$\vec{r}=(\hat{i}-2 \hat{j}+\hat{k})+\mu(-\hat{i}+3 \hat{j}+2 \hat{k}), \mu \in \mathbb{R}$$ is :
Let $$\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k}, \alpha, \beta \in \mathbb{R}$$. Let a vector $$\vec{b}$$ be such that the angle between $$\vec{a}$$ and $$\vec{b}$$ is $$\frac{\pi}{4}$$ and $$|\vec{b}|^2=6$$. If $$\vec{a} \cdot \vec{b}=3 \sqrt{2}$$, then the value of $$\left(\alpha^2+\beta^2\right)|\vec{a} \times \vec{b}|^2$$ is equal to
Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{b}|=1$$ and $$|\vec{b} \times \vec{a}|=2$$. Then $$|(\vec{b} \times \vec{a})-\vec{b}|^2$$ is equal to
Let $$\overrightarrow{\mathrm{a}}=\mathrm{a}_1 \hat{i}+\mathrm{a}_2 \hat{j}+\mathrm{a}_3 \hat{k}$$ and $$\overrightarrow{\mathrm{b}}=\mathrm{b}_1 \hat{i}+\mathrm{b}_2 \hat{j}+\mathrm{b}_3 \hat{k}$$ be two vectors such that $$|\overrightarrow{\mathrm{a}}|=1, \vec{a} \cdot \vec{b}=2$$ and $$|\vec{b}|=4$$. If $$\vec{c}=2(\vec{a} \times \vec{b})-3 \vec{b}$$, then the angle between $$\vec{b}$$ and $$\vec{c}$$ is equal to:
Let a unit vector $$\hat{u}=x \hat{i}+y \hat{j}+z \hat{k}$$ make angles $$\frac{\pi}{2}, \frac{\pi}{3}$$ and $$\frac{2 \pi}{3}$$ with the vectors $$\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{k}, \frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}$$ and $$\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}$$ respectively. If $$\vec{v}=\frac{1}{\sqrt{2}} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{\sqrt{2}} \hat{k}$$ then $$|\hat{u}-\vec{v}|^2$$ is equal to
Let $$\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=12 \vec{a}+4 \vec{b} \text { and } \overrightarrow{O C}=\vec{b}$$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $$\mathrm{{{area\,of\,the\,quadrilateral\,OA\,BC} \over {area\,of\,S}}}$$ is equal to _________.
Let $$\vec{a}, \vec{b}$$ and $$\vec{c}$$ be three non-zero vectors such that $$\vec{b}$$ and $$\vec{c}$$ are non-collinear. If $$\vec{a}+5 \vec{b}$$ is collinear with $$\vec{c}, \vec{b}+6 \vec{c}$$ is collinear with $$\vec{a}$$ and $$\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$$, then $$\alpha+\beta$$ is equal to
Let the position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle be $$2 \hat{i}+2 \hat{j}+\hat{k}, \hat{i}+2 \hat{j}+2 \hat{k}$$ and $$2 \hat{i}+\hat{j}+2 \hat{k}$$ respectively. Let $$l_1, l_2$$ and $$l_3$$ be the lengths of perpendiculars drawn from the ortho center of the triangle on the sides $$\mathrm{AB}, \mathrm{BC}$$ and $$\mathrm{CA}$$ respectively, then $$l_1^2+l_2^2+l_3^2$$ equals:
The position vectors of the vertices $$\mathrm{A}, \mathrm{B}$$ and $$\mathrm{C}$$ of a triangle are $$2 \hat{i}-3 \hat{j}+3 \hat{k}, 2 \hat{i}+2 \hat{j}+3 \hat{k}$$ and $$-\hat{i}+\hat{j}+3 \hat{k}$$ respectively. Let $$l$$ denotes the length of the angle bisector $$\mathrm{AD}$$ of $$\angle \mathrm{BAC}$$ where $$\mathrm{D}$$ is on the line segment $$\mathrm{BC}$$, then $$2 l^2$$ equals :
$\overrightarrow{\mathrm{b}}=3(\hat{i}-\hat{j}+\hat{k})$.
Let $\overrightarrow{\mathrm{c}}$ be the vector such that $\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}}$ and $\vec{a} \cdot \vec{c}=3$.
Then $\vec{a} \cdot((\vec{c} \times \vec{b})-\vec{b}-\vec{c})$ is equal to :
Let $$|\vec{a}|=2,|\vec{b}|=3$$ and the angle between the vectors $$\vec{a}$$ and $$\vec{b}$$ be $$\frac{\pi}{4}$$. Then $$|(\vec{a}+2 \vec{b}) \times(2 \vec{a}-3 \vec{b})|^{2}$$ is equal to :
Let for a triangle $$\mathrm{ABC}$$,
$$\overrightarrow{\mathrm{AB}}=-2 \hat{i}+\hat{j}+3 \hat{k}$$
$$\overrightarrow{\mathrm{CB}}=\alpha \hat{i}+\beta \hat{j}+\gamma \hat{k}$$
$$\overrightarrow{\mathrm{CA}}=4 \hat{i}+3 \hat{j}+\delta \hat{k}$$
If $$\delta > 0$$ and the area of the triangle $$\mathrm{ABC}$$ is $$5 \sqrt{6}$$, then $$\overrightarrow{C B} \cdot \overrightarrow{C A}$$ is equal to
Let $$\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$$ and $$\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$. If a vector $$\vec{d}$$ satisfies $$\vec{d} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{d} \cdot \vec{a}=24$$, then $$|\vec{d}|^{2}$$ is equal to :
Let $$a, b, c$$ be three distinct real numbers, none equal to one. If the vectors $$a \hat{i}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \hat{\mathrm{i}}+b \hat{j}+\hat{\mathrm{k}}$$ and $$\hat{\mathrm{i}}+\hat{\mathrm{j}}+c \hat{\mathrm{k}}$$ are coplanar, then $$\frac{1}{1-a}+\frac{1}{1-b}+\frac{1}{1-c}$$ is equal to :
Let $$\lambda \in \mathbb{Z}, \vec{a}=\lambda \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=\overrightarrow{0}, \vec{a} \cdot \vec{c}=-17$$ and $$\vec{b} \cdot \vec{c}=-20$$. Then $$|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}$$ is equal to :
If four distinct points with position vectors $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$ are coplanar, then $$[\vec{a} \,\,\vec{b} \,\,\vec{c}]$$ is equal to :
For any vector $$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$$, with $$10\left|a_{i}\right|<1, i=1,2,3$$, consider the following statements :
(A): $$\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} \leq|\vec{a}|$$
(B) : $$|\vec{a}| \leq 3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$$
Let $$\vec{a}$$ be a non-zero vector parallel to the line of intersection of the two planes described by $$\hat{i}+\hat{j}, \hat{i}+\hat{k}$$ and $$\hat{i}-\hat{j}, \hat{j}-\hat{k}$$. If $$\theta$$ is the angle between the vector $$\vec{a}$$ and the vector $$\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$$ and $$\vec{a} \cdot \vec{b}=6$$, then the ordered pair $$(\theta,|\vec{a} \times \vec{b}|)$$ is equal to :
Let $$\vec{a}=2 \hat{i}+7 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{k}$$ and $$\vec{c}=\hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{d}$$ be a vector which is perpendicular to both $$\vec{a}$$ and $$\vec{b}$$, and $$\vec{c} \cdot \vec{d}=12$$. Then $$(-\hat{i}+\hat{j}-\hat{k}) \cdot(\vec{c} \times \vec{d})$$ is equal to :
If the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively the circumcenter and the orthocentre of a $$\triangle \mathrm{ABC}$$, then $$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$$ is equal to :
Let O be the origin and the position vector of the point P be $$ - \widehat i - 2\widehat j + 3\widehat k$$. If the position vectors of the points A, B and C are $$ - 2\widehat i + \widehat j - 3\widehat k,2\widehat i + 4\widehat j - 2\widehat k$$ and $$ - 4\widehat i + 2\widehat j - \widehat k$$ respectively, then the projection of the vector $$\overrightarrow {OP} $$ on a vector perpendicular to the vectors $$\overrightarrow {AB} $$ and $$\overrightarrow {AC} $$ is :
An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $$\overrightarrow {OP} = \overrightarrow u ,\overrightarrow {OR} = \overrightarrow v $$, and $$\overrightarrow {OQ} = \alpha \overrightarrow u + \beta \overrightarrow v $$, then $$\alpha ,{\beta ^2}$$ are the roots of the equation :
Let the vectors $$\vec{u}_{1}=\hat{i}+\hat{j}+a \hat{k}, \vec{u}_{2}=\hat{i}+b \hat{j}+\hat{k}$$ and $$\vec{u}_{3}=c \hat{i}+\hat{j}+\hat{k}$$ be coplanar. If the vectors $$\vec{v}_{1}=(a+b) \hat{i}+c \hat{j}+c \hat{k}, \vec{v}_{2}=a \hat{i}+(b+c) \hat{j}+a \hat{k}$$ and $$\vec{v}_{3}=b \hat{i}+b \hat{j}+(c+a) \hat{k}$$ are also coplanar, then $$6(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ is equal to :
The area of the quadrilateral $$\mathrm{ABCD}$$ with vertices $$\mathrm{A}(2,1,1), \mathrm{B}(1,2,5), \mathrm{C}(-2,-3,5)$$ and $$\mathrm{D}(1,-6,-7)$$ is equal to :
If the points with position vectors $$\alpha \hat{i}+10 \hat{j}+13 \hat{k}, 6 \hat{i}+11 \hat{j}+11 \hat{k}, \frac{9}{2} \hat{i}+\beta \hat{j}-8 \hat{k}$$ are collinear, then $$(19 \alpha-6 \beta)^{2}$$ is equal to :
Let the vectors $$\vec{a}, \vec{b}, \vec{c}$$ represent three coterminous edges of a parallelopiped of volume V. Then the volume of the parallelopiped, whose coterminous edges are represented by $$\vec{a}, \vec{b}+\vec{c}$$ and $$\vec{a}+2 \vec{b}+3 \vec{c}$$ is equal to :
The sum of all values of $$\alpha$$, for which the points whose position vectors are $$\hat{i}-2 \hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k},(\alpha+1) \hat{i}+2 \hat{k}$$ and $$9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$$ are coplanar, is equal to :
Let the position vectors of the points A, B, C and D be
$$5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$$ and $$-\hat{i}+5 \hat{j}+6 \hat{k}$$. Let the set $$S=\{\lambda \in \mathbb{R}$$ :
the points A, B, C and D are coplanar $$\}$$.
Then $$\sum_\limits{\lambda \in S}(\lambda+2)^{2}$$ is equal to :
Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :
Let $$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$$ and $$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$$ be two vectors. Then which one of the following statements is TRUE ?
Let $$\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$$ and $$\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$$ be three given vectors. If $$\overrightarrow{\mathrm{r}}$$ is a vector such that $$\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$$ and $$\vec{r} \cdot \vec{b}=0$$, then $$|\vec{r}|$$ is equal to :
Let $$\vec{a}=2 \hat{i}+\hat{j}+\hat{k}$$, and $$\vec{b}$$ and $$\vec{c}$$ be two nonzero vectors such that $$|\vec{a}+\vec{b}+\vec{c}|=|\vec{a}+\vec{b}-\vec{c}|$$ and $$\vec{b} \cdot \vec{c}=0$$. Consider the following two statements:
(A) $$|\vec{a}+\lambda \vec{c}| \geq|\vec{a}|$$ for all $$\lambda \in \mathbb{R}$$.
(B) $$\vec{a}$$ and $$\vec{c}$$ are always parallel.
Then,
If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$,
then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to :
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors and $$\widehat n$$ is a unit vector perpendicular to $$\overrightarrow c $$ such that $$\overrightarrow a = \alpha \overrightarrow b - \widehat n,(\alpha \ne 0)$$ and $$\overrightarrow b \,.\overrightarrow c = 12$$, then $$\left| {\overrightarrow c \times (\overrightarrow a \times \overrightarrow b )} \right|$$ is equal to :
Let a unit vector $$\widehat{O P}$$ make angles $$\alpha, \beta, \gamma$$ with the positive directions of the co-ordinate axes $$\mathrm{OX}$$, $$\mathrm{OY}, \mathrm{OZ}$$ respectively, where $$\beta \in\left(0, \frac{\pi}{2}\right)$$. If $$\widehat{\mathrm{OP}}$$ is perpendicular to the plane through points $$(1,2,3),(2,3,4)$$ and $$(1,5,7)$$, then which one of the following is true?
If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to :
Let $$\overrightarrow a = 4\widehat i + 3\widehat j$$ and $$\overrightarrow b = 3\widehat i - 4\widehat j + 5\widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right) + 25 = 0,\overrightarrow c \,.(\widehat i + \widehat j + \widehat k) = 4$$, and projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ is 1, then the projection of $$\overrightarrow c $$ on $$\overrightarrow b $$ equals :
If the vectors $$\overrightarrow a = \lambda \widehat i + \mu \widehat j + 4\widehat k$$, $$\overrightarrow b = - 2\widehat i + 4\widehat j - 2\widehat k$$ and $$\overrightarrow c = 2\widehat i + 3\widehat j + \widehat k$$ are coplanar and the projection of $$\overrightarrow a $$ on the vector $$\overrightarrow b $$ is $$\sqrt {54} $$ units, then the sum of all possible values of $$\lambda + \mu $$ is equal to :
Let $$\overrightarrow a = - \widehat i - \widehat j + \widehat k,\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat i - \widehat j$$. Then $$\overrightarrow a - 6\overrightarrow b $$ is equal to :
If the four points, whose position vectors are $$3\widehat i - 4\widehat j + 2\widehat k,\widehat i + 2\widehat j - \widehat k, - 2\widehat i - \widehat j + 3\widehat k$$ and $$5\widehat i - 2\alpha \widehat j + 4\widehat k$$ are coplanar, then $$\alpha$$ is equal to :
The vector $$\overrightarrow a = - \widehat i + 2\widehat j + \widehat k$$ is rotated through a right angle, passing through the y-axis in its way and the resulting vector is $$\overrightarrow b $$. Then the projection of $$3\overrightarrow a + \sqrt 2 \overrightarrow b $$ on $$\overrightarrow c = 5\widehat i + 4\widehat j + 3\widehat k$$ is :
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non zero vectors such that $$\overrightarrow b $$ . $$\overrightarrow c $$ = 0 and $$\overrightarrow a \times (\overrightarrow b \times \overrightarrow c ) = {{\overrightarrow b - \overrightarrow c } \over 2}$$. If $$\overrightarrow d $$ be a vector such that $$\overrightarrow b \,.\,\overrightarrow d = \overrightarrow a \,.\,\overrightarrow b $$, then $$(\overrightarrow a \times \overrightarrow b )\,.\,(\overrightarrow c \times \overrightarrow d )$$ is equal to
Let $$\overrightarrow \alpha = 4\widehat i + 3\widehat j + 5\widehat k$$ and $$\overrightarrow \beta = \widehat i + 2\widehat j - 4\widehat k$$. Let $${\overrightarrow \beta _1}$$ be parallel to $$\overrightarrow \alpha $$ and $${\overrightarrow \beta _2}$$ be perpendicular to $$\overrightarrow \alpha $$. If $$\overrightarrow \beta = {\overrightarrow \beta _1} + {\overrightarrow \beta _2}$$, then the value of $$5{\overrightarrow \beta _2}\,.\left( {\widehat i + \widehat j + \widehat k} \right)$$ is :
Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that
$${{QA} \over {AR}} = {{RB} \over {BP}} = {{PC} \over {CQ}} = {1 \over 2}$$. Then $${{Area(\Delta PQR)} \over {Area(\Delta ABC)}}$$ is equal to :
Let $$\overrightarrow u = \widehat i - \widehat j - 2\widehat k,\overrightarrow v = 2\widehat i + \widehat j - \widehat k,\overrightarrow v .\,\overrightarrow w = 2$$ and $$\overrightarrow v \times \overrightarrow w = \overrightarrow u + \lambda \overrightarrow v $$. Then $$\overrightarrow u .\,\overrightarrow w $$ is equal to :
Let $$\vec{a}, \vec{b}, \vec{c}$$ be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and $$(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})+(\vec{b} \times \vec{c}) \cdot(\vec{c} \times \vec{a})+(\vec{c} \times \vec{a}) \cdot(\vec{a} \times \vec{b})=168$$, then $$|\vec{a}|+|\vec{b}|+|\vec{c}|$$ is equal to :
Let $$\overrightarrow{\mathrm{a}}=3 \hat{i}+\hat{j}$$ and $$\overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}+\hat{k}$$. Let $$\overrightarrow{\mathrm{c}}$$ be a vector satisfying $$\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}})=\overrightarrow{\mathrm{b}}+\lambda \overrightarrow{\mathrm{c}}$$. If $$\overrightarrow{\mathrm{b}}$$ and $$\overrightarrow{\mathrm{c}}$$ are non-parallel, then the value of $$\lambda$$ is :
Let $$\hat{a}$$ and $$\hat{b}$$ be two unit vectors such that the angle between them is $$\frac{\pi}{4}$$. If $$\theta$$ is the angle between the vectors $$(\hat{a}+\hat{b})$$ and $$(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$$, then the value of $$164 \,\cos ^{2} \theta$$ is equal to :
Let S be the set of all a $$\in R$$ for which the angle between the vectors $$ \vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$$ and $$\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k}$$, $$(b>1)$$ is acute. Then S is equal to :
Let the vectors $$\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}, \vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$$ and $$\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R}$$ be such that for $$\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$$. Then, the set of all values of $$t$$ is :
Let a vector $$\vec{a}$$ has magnitude 9. Let a vector $$\vec{b}$$ be such that for every $$(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}$$, the vector $$(x \vec{a}+y \vec{b})$$ is perpendicular to the vector $$(6 y \vec{a}-18 x \vec{b})$$. Then the value of $$|\vec{a} \times \vec{b}|$$ is equal to :
Let $$\vec{a}=\alpha \hat{i}+\hat{j}+\beta \hat{k}$$ and $$\vec{b}=3 \hat{i}-5 \hat{j}+4 \hat{k}$$ be two vectors, such that $$\vec{a} \times \vec{b}=-\hat{i}+9 \hat{j}+12 \hat{k}$$. Then the projection of $$\vec{b}-2 \vec{a}$$ on $$\vec{b}+\vec{a}$$ is equal to :
$$ \text { Let } \vec{a}=2 \hat{i}-\hat{j}+5 \hat{k} \text { and } \vec{b}=\alpha \hat{i}+\beta \hat{j}+2 \hat{k} \text {. If }((\vec{a} \times \vec{b}) \times \hat{i}) \cdot \hat{k}=\frac{23}{2} \text {, then }|\vec{b} \times 2 \hat{j}| $$ is equal to :
Let $$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=2 \hat{i}+\hat{j}-\alpha \hat{k}, \alpha>0$$. If the projection of $$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$$ on the vector $$-\hat{i}+2 \hat{j}-2 \hat{k}$$ is 30, then $$\alpha$$ is equal to :
Let $$\vec{a}=\hat{i}-\hat{j}+2 \hat{k}$$ and let $$\vec{b}$$ be a vector such that $$\vec{a} \times \vec{b}=2 \hat{i}-\hat{k}$$ and $$\vec{a} \cdot \vec{b}=3$$. Then the projection of $$\vec{b}$$ on the vector $$\vec{a}-\vec{b}$$ is :
Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :
$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$
$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$
Then
Let a vector $$\overrightarrow c $$ be coplanar with the vectors $$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat j - \widehat k$$. If the vector $$\overrightarrow c $$ also satisfies the conditions $$\overrightarrow c \,.\,\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right] = - 42$$ and $$\left( {\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right)\,.\,\widehat k = 3$$, then the value of $$|\overrightarrow c {|^2}$$ is equal to :
$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$
$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$
$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$
If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :
Let $$\overrightarrow a = \alpha \widehat i + 3\widehat j - \widehat k$$, $$\overrightarrow b = 3\widehat i - \beta \widehat j + 4\widehat k$$ and $$\overrightarrow c = \widehat i + 2\widehat j - 2\widehat k$$ where $$\alpha ,\,\beta \in R$$, be three vectors. If the projection of $$\overrightarrow a $$ on $$\overrightarrow c $$ is $${{10} \over 3}$$ and $$\overrightarrow b \times \overrightarrow c = - 6\widehat i + 10\widehat j + 7\widehat k$$, then the value of $$\alpha + \beta $$ is equal to :
Let $$\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$$ and $$\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$$, where $$\alpha \in R$$. If the area of the parallelogram whose adjacent sides are represented by the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ is $$\sqrt {15({\alpha ^2} + 4)} $$, then the value of $$2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$$ is equal to :
Let $$\overrightarrow a $$ be a vector which is perpendicular to the vector $$3\widehat i + {1 \over 2}\widehat j + 2\widehat k$$. If $$\overrightarrow a \times \left( {2\widehat i + \widehat k} \right) = 2\widehat i - 13\widehat j - 4\widehat k$$, then the projection of the vector $$\overrightarrow a $$ on the vector $$2\widehat i + 2\widehat j + \widehat k$$ is :
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be the vectors along the diagonals of a parallelogram having area $$2\sqrt 2 $$. Let the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ be acute, $$|\overrightarrow a | = 1$$, and $$|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$$. If $$\overrightarrow c = 2\sqrt 2 \left( {\overrightarrow a \times \overrightarrow b } \right) - 2\overrightarrow b $$, then an angle between $$\overrightarrow b $$ and $$\overrightarrow c $$ is :
Let $$\overrightarrow a = \widehat i + \widehat j - \widehat k$$ and $$\overrightarrow c = 2\widehat i - 3\widehat j + 2\widehat k$$. Then the number of vectors $$\overrightarrow b $$ such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow a $$ and $$|\overrightarrow b | \in $$ {1, 2, ........, 10} is :
If $$\overrightarrow a \,.\,\overrightarrow b = 1,\,\overrightarrow b \,.\,\overrightarrow c = 2$$ and $$\overrightarrow c \,.\,\overrightarrow a = 3$$, then the value of $$\left[ {\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right),\,\overrightarrow b \times \left( {\overrightarrow c \times \overrightarrow a } \right),\,\overrightarrow c \times \left( {\overrightarrow b \times \overrightarrow a } \right)} \right]$$ is :
Let $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$$ $${a_i} > 0$$, $$i = 1,2,3$$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $$\overrightarrow a $$ on the vector $$3\widehat i + 4\widehat j$$ be 7. Let $$\overrightarrow b $$ be a vector obtained by rotating $$\overrightarrow a $$ with 90$$^\circ$$. If $$\overrightarrow a $$, $$\overrightarrow b $$ and x-axis are coplanar, then projection of a vector $$\overrightarrow b $$ on $$3\widehat i + 4\widehat j$$ is equal to:
Let $$\widehat a$$ and $$\widehat b$$ be two unit vectors such that $$|(\widehat a + \widehat b) + 2(\widehat a \times \widehat b)| = 2$$. If $$\theta$$ $$\in$$ (0, $$\pi$$) is the angle between $$\widehat a$$ and $$\widehat b$$, then among the statements :
(S1) : $$2|\widehat a \times \widehat b| = |\widehat a - \widehat b|$$
(S2) : The projection of $$\widehat a$$ on ($$\widehat a$$ + $$\widehat b$$) is $${1 \over 2}$$
Let $$\widehat a$$, $$\widehat b$$ be unit vectors. If $$\overrightarrow c $$ be a vector such that the angle between $$\widehat a$$ and $$\overrightarrow c $$ is $${\pi \over {12}}$$, and $$\widehat b = \overrightarrow c + 2\left( {\overrightarrow c \times \widehat a} \right)$$, then $${\left| {6\overrightarrow c } \right|^2}$$ is equal to :
$$\overrightarrow a \times \{ (\overrightarrow r - \overrightarrow b ) \times \overrightarrow a \} + \overrightarrow b \times \{ (\overrightarrow r - \overrightarrow c ) \times \overrightarrow b \} + \overrightarrow c \times \{ (\overrightarrow r - \overrightarrow a ) \times \overrightarrow c \} = \overrightarrow 0 $$, then $$\overrightarrow r $$ is equal to :
such that $$\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$$ and the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is 60$$^\circ$$. If $${1 \over 8}\overrightarrow a $$ is a unit vector, then $$\left| {\overrightarrow b } \right|$$ is equal to :

$$(2 + a + b)\widehat i + (a + 2b + c)\widehat j - (b + c)\widehat k,(1 + b)\widehat i + 2b\widehat j - b\widehat k$$ and $$(2 + b)\widehat i + 2b\widehat j + (1 - b)\widehat k$$, $$a,b,c, \in R$$
be co-planar. Then which of the following is true?
If $$\overrightarrow r $$ $$\times$$ $$\overrightarrow a $$ = $$\overrightarrow r $$ $$\times$$ $$\overrightarrow b $$, $$\overrightarrow r $$ . ($$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$) = $$-$$3, then $$\overrightarrow r $$ . (2$$\widehat i$$ $$-$$ 3$$\widehat j$$ + $$\widehat k$$) is equal to :
$$\overrightarrow r $$ . $$\left( {\alpha \widehat i + 2\widehat j + \widehat k} \right)$$ = 3 and $$\overrightarrow r \,.\,\left( {2\widehat i + 5\widehat j - \alpha \widehat k} \right)$$ = $$-$$1, $$\alpha$$ $$\in$$ R, then the
value of $$\alpha$$ + $${\left| {\overrightarrow r } \right|^2}$$ is equal to :
$$\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)} \right)$$ is equal to :
coterminus edges are given by the
vectors $$\overrightarrow a = \widehat i + \widehat j + n\widehat k$$,
$$\overrightarrow b = 2\widehat i + 4\widehat j - n\widehat k$$ and
$$\overrightarrow c = \widehat i + n\widehat j + 3\widehat k$$ ($$n \ge 0$$), is 158 cu. units, then :
$$\overrightarrow a = x\widehat i - 2\widehat j + 3\widehat k$$, $$\overrightarrow b = - 2\widehat i + x\widehat j - \widehat k$$, $$\overrightarrow c = 7\widehat i - 2\widehat j + x\widehat k$$. Then the value of
$$\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a $$ at x = x0 is :
$$a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right)$$,
where $${\theta = {\pi \over 9}}$$, then the angle between the vectors $$a\widehat i + b\widehat j + c\widehat k$$ and $$b\widehat i + c\widehat j + a\widehat k$$ is :
$$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$ and
$$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
$$\overrightarrow u = \widehat i + \widehat j + \lambda \widehat k$$, $$\overrightarrow v = \widehat i + \widehat j + 3\widehat k$$ and
$$\overrightarrow w = 2\widehat i + \widehat j + \widehat k$$ be 1 cu. unit. If $$\theta $$ be the angle between the edges $$\overrightarrow u $$ and $$\overrightarrow w $$ , then cos$$\theta $$ can be :
$$\overrightarrow a + \vec b + \overrightarrow c = \overrightarrow 0 $$. If $$\lambda = \overrightarrow a .\vec b + \vec b.\overrightarrow c + \overrightarrow c .\overrightarrow a $$ and
$$\overrightarrow d = \overrightarrow a \times \vec b + \vec b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a $$, then the ordered pair, $$\left( {\lambda ,\overrightarrow d } \right)$$ is equal to :
$$\overrightarrow a = \alpha \widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 2\widehat i + \widehat j - \alpha \widehat k$$
and $$\overrightarrow c = \alpha \widehat i - 2\widehat j + 3\widehat k$$.
Then the set S = {$$\alpha $$ : $$\overrightarrow a $$ , $$\overrightarrow b $$ and $$\overrightarrow c $$ are coplanar} :
If $$\overrightarrow a + \overrightarrow b $$ is perpendicular to $$\overrightarrow c $$ , then $$\left| {\overrightarrow b } \right|$$ is equal to :
be a vector such that $$\overrightarrow a $$ × $$\overrightarrow c $$ + $$\overrightarrow b $$ = $$\overrightarrow 0 $$
and $$\overrightarrow a $$ . $$\overrightarrow c $$ = 4, then |$$\overrightarrow c $$|2 is equal to :
Let $$\overrightarrow c $$ be a vector such that $$\left| {\overrightarrow c - \overrightarrow a } \right| = 3$$,
$$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = 3$$ and the angle between $$\overrightarrow c $$ and $\overrightarrow a \times \overrightarrow b$ is $$30^\circ $$.
Then $$\overrightarrow a .\overrightarrow c $$ is equal to :
$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a .$$ If $$\theta $$ is the angle between vectors $$\overrightarrow b $$ and $${\overrightarrow c }$$ , then a value of sin $$\theta $$ is :
of $$\left( {2\overrightarrow a - \overrightarrow b } \right)\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a + 2\overrightarrow b } \right)} \right]$$ is :
$$\overrightarrow b = \widehat i + \widehat j$$ and $$\overrightarrow c = \widehat j + \widehat k$$ and bisects the angle between $$\overrightarrow b $$ and $$\overrightarrow c $$.Then which one of the following gives possible values of $$\alpha $$ and $$\beta $$ ?
$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right)\,\,\,\,\,\,\,\,{\lambda ^2}\overrightarrow b \,\,\,\,\,\,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\,\,\,\,\,\,\overrightarrow b + \overrightarrow c \,\,\,\,\,\,\,\,\overrightarrow b } \right]$$ for :
$$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ , $$\left| {\overrightarrow a } \right| = 1\,\,\,\left| {\overrightarrow b } \right| = 2,\,\,\,\left| {\overrightarrow c } \right| = 3,$$,
then $${\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a }$$ is equal to :
$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
vectors $$7\widehat i - 4\widehat j + 7\widehat k,\widehat i - 6\widehat j + 10\widehat k, - \widehat i - 3\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 5\widehat k$$ respectively. Then $$ABCD$$ is a :
Numerical
Let $\vec{a}=\hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}, \overrightarrow{\mathrm{b}}=2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+\hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{d}}=\vec{a} \times \overrightarrow{\mathrm{b}}$. If $\overrightarrow{\mathrm{c}}$ is a vector such that $\vec{a} \cdot \overrightarrow{\mathrm{c}}=|\overrightarrow{\mathrm{c}}|$, $|\overrightarrow{\mathrm{c}}-2 \vec{a}|^2=8$ and the angle between $\overrightarrow{\mathrm{d}}$ and $\overrightarrow{\mathrm{c}}$ is $\frac{\pi}{4}$, then $|10-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}|+|\overrightarrow{\mathrm{d}} \times \overrightarrow{\mathrm{c}}|^2$ is equal to _________.
Let $\vec{c}$ be the projection vector of $\vec{b}=\lambda \hat{i}+4 \hat{k}, \lambda>0$, on the vector $\vec{a}=\hat{i}+2 \hat{j}+2 \hat{k}$. If $|\vec{a}+\vec{c}|=7$, then the area of the parallelogram formed by the vectors $\vec{b}$ and $\vec{c}$ is _________.
Let $$\vec{a}=9 \hat{i}-13 \hat{j}+25 \hat{k}, \vec{b}=3 \hat{i}+7 \hat{j}-13 \hat{k}$$ and $$\vec{c}=17 \hat{i}-2 \hat{j}+\hat{k}$$ be three given vectors. If $$\vec{r}$$ is a vector such that $$\vec{r} \times \vec{a}=(\vec{b}+\vec{c}) \times \vec{a}$$ and $$\vec{r} \cdot(\vec{b}-\vec{c})=0$$, then $$\frac{|593 \vec{r}+67 \vec{a}|^2}{(593)^2}$$ is equal to __________.
Let $$\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$$ and a vector $$\vec{c}$$ be such that $$\vec{a} \times(\vec{b}+\vec{c})+\vec{b} \times \vec{c}=\hat{i}+8 \hat{j}+13 \hat{k}$$. If $$\vec{a} \cdot \vec{c}=13$$, then $$(24-\vec{b} \cdot \vec{c})$$ is equal to _______.
Let $$\overrightarrow{\mathrm{a}}=\hat{i}-3 \hat{j}+7 \hat{k}, \overrightarrow{\mathrm{b}}=2 \hat{i}-\hat{j}+\hat{k}$$ and $$\overrightarrow{\mathrm{c}}$$ be a vector such that $$(\overrightarrow{\mathrm{a}}+2 \overrightarrow{\mathrm{b}}) \times \overrightarrow{\mathrm{c}}=3(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}})$$. If $$\vec{a} \cdot \vec{c}=130$$, then $$\vec{b} \cdot \vec{c}$$ is equal to __________.
Let $$\mathrm{ABC}$$ be a triangle of area $$15 \sqrt{2}$$ and the vectors $$\overrightarrow{\mathrm{AB}}=\hat{i}+2 \hat{j}-7 \hat{k}, \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{i}+\mathrm{b} \hat{j}+\mathrm{c} \hat{k}$$ and $$\overrightarrow{\mathrm{AC}}=6 \hat{i}+\mathrm{d} \hat{j}-2 \hat{k}, \mathrm{~d}>0$$. Then the square of the length of the largest side of the triangle $$\mathrm{ABC}$$ is _________.
Let $$\vec{a}=3 \hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$$ and $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}) \times \vec{c}=2(\vec{a} \times \vec{b})+24 \hat{j}-6 \hat{k}$$ and $$(\vec{a}-\vec{b}+\hat{i}) \cdot \vec{c}=-3$$. Then $$|\vec{c}|^2$$ is equal to ________.
Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}|=1,|\vec{b}|=4$$, and $$\vec{a} \cdot \vec{b}=2$$. If $$\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$$ and the angle between $$\vec{b}$$ and $$\vec{c}$$ is $$\alpha$$, then $$192 \sin ^2 \alpha$$ is equal to ________.
Let $$\vec{a}=3 \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{c}=2 \hat{i}-3 \hat{j}+3 \hat{k}$$. If $$\vec{b}$$ is a vector such that $$\vec{a}=\vec{b} \times \vec{c}$$ and $$|\vec{b}|^{2}=50$$, then $$|72-| \vec{b}+\left.\vec{c}\right|^{2} \mid$$ is equal to __________.
Let $$\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$$ and $$\vec{b}=\hat{i}+\hat{j}-\hat{k}$$. If $$\vec{c}$$ is a vector such that $$\vec{a} \cdot \vec{c}=11, \vec{b} \cdot(\vec{a} \times \vec{c})=27$$ and $$\vec{b} \cdot \vec{c}=-\sqrt{3}|\vec{b}|$$, then $$|\vec{a} \times \vec{c}|^{2}$$ is equal to _________.
Let $$\vec{a}=6 \hat{i}+9 \hat{j}+12 \hat{k}, \vec{b}=\alpha \hat{i}+11 \hat{j}-2 \hat{k}$$ and $$\vec{c}$$ be vectors such that $$\vec{a} \times \vec{c}=\vec{a} \times \vec{b}$$. If
$$\vec{a} \cdot \vec{c}=-12, \vec{c} \cdot(\hat{i}-2 \hat{j}+\hat{k})=5$$, then $$\vec{c} \cdot(\hat{i}+\hat{j}+\hat{k})$$ is equal to _______________.
Let $$\vec{v}=\alpha \hat{i}+2 \hat{j}-3 \hat{k}, \vec{w}=2 \alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{u}$$ be a vector such that $$|\vec{u}|=\alpha>0$$. If the minimum value of the scalar triple product $$\left[ {\matrix{ {\overrightarrow u } & {\overrightarrow v } & {\overrightarrow w } \cr } } \right]$$ is $$-\alpha \sqrt{3401}$$, and $$|\vec{u} \cdot \hat{i}|^{2}=\frac{m}{n}$$ where $$m$$ and $$n$$ are coprime natural numbers, then $$m+n$$ is equal to ____________.
$$A(2,6,2), B(-4,0, \lambda), C(2,3,-1)$$ and $$D(4,5,0),|\lambda| \leq 5$$ are the vertices of a quadrilateral $$A B C D$$. If its area is 18 square units, then $$5-6 \lambda$$ is equal to __________.
$|\vec{a}|=\sqrt{31}, 4|\vec{b}|=|\vec{c}|=2$ and $2(\vec{a} \times \vec{b})=3(\vec{c} \times \vec{a})$.
If the angle between $\vec{b}$ and $\vec{c}$ is $\frac{2 \pi}{3}$, then $\left(\frac{\vec{a} \times \vec{c}}{\vec{a} \cdot \vec{b}}\right)^{2}$ is equal to __________.
Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{6}$$ and $$|\vec{a} \times \vec{b}|=\sqrt{48}$$. Then $$(\vec{a} \cdot \vec{b})^{2}$$ is equal to ___________.
Let $$\overrightarrow a $$, $$\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero non-coplanar vectors. Let the position vectors of four points $$A,B,C$$ and $$D$$ be $$\overrightarrow a - \overrightarrow b + \overrightarrow c ,\lambda \overrightarrow a - 3\overrightarrow b + 4\overrightarrow c , - \overrightarrow a + 2\overrightarrow b - 3\overrightarrow c $$ and $$2\overrightarrow a - 4\overrightarrow b + 6\overrightarrow c $$ respectively. If $$\overrightarrow {AB} ,\overrightarrow {AC} $$ and $$\overrightarrow {AD} $$ are coplanar, then $$\lambda$$ is equal to __________.
Let $$\overrightarrow a = \widehat i + 2\widehat j + \lambda \widehat k,\overrightarrow b = 3\widehat i - 5\widehat j - \lambda \widehat k,\overrightarrow a \,.\,\overrightarrow c = 7,2\overrightarrow b \,.\,\overrightarrow c + 43 = 0,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow c $$. Then $$\left| {\overrightarrow a \,.\,\overrightarrow b } \right|$$ is equal to :
Let $$\vec{a}$$ and $$\vec{b}$$ be two vectors such that $$|\vec{a}+\vec{b}|^{2}=|\vec{a}|^{2}+2|\vec{b}|^{2}, \vec{a} \cdot \vec{b}=3$$ and $$|\vec{a} \times \vec{b}|^{2}=75$$. Then $$|\vec{a}|^{2}$$ is equal to __________.
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three non-coplanar vectors such that $$\overrightarrow a $$ $$\times$$ $$\overrightarrow b $$ = 4$$\overrightarrow c $$, $$\overrightarrow b $$ $$\times$$ $$\overrightarrow c $$ = 9$$\overrightarrow a $$ and $$\overrightarrow c $$ $$\times$$ $$\overrightarrow a $$ = $$\alpha$$$$\overrightarrow b $$, $$\alpha$$ > 0. If $$\left| {\overrightarrow a } \right| + \left| {\overrightarrow b } \right| + \left| {\overrightarrow c } \right| = {1 \over {36}}$$, then $$\alpha$$ is equal to __________.
Let $$\overrightarrow a = \widehat i - 2\widehat j + 3\widehat k$$, $$\overrightarrow b = \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow c $$ be a vector such that $$\overrightarrow a + \left( {\overrightarrow b \times \overrightarrow c } \right) = \overrightarrow 0 $$ and $$\overrightarrow b \,.\,\overrightarrow c = 5$$. Then the value of $$3\left( {\overrightarrow c \,.\,\overrightarrow a } \right)$$ is equal to _________.
If $$\overrightarrow a = 2\widehat i + \widehat j + 3\widehat k$$, $$\overrightarrow b = 3\widehat i + 3\widehat j + \widehat k$$ and $$\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k$$ are coplanar vectors and $$\overrightarrow a \,.\,\overrightarrow c = 5$$, $$\overrightarrow b \bot \overrightarrow c $$, then $$122({c_1} + {c_2} + {c_3})$$ is equal to ___________.
Let $$\overrightarrow b = \widehat i + \widehat j + \lambda \widehat k$$, $$\lambda$$ $$\in$$ R. If $$\overrightarrow a $$ is a vector such that $$\overrightarrow a \times \overrightarrow b = 13\widehat i - \widehat j - 4\widehat k$$ and $$\overrightarrow a \,.\,\overrightarrow b + 21 = 0$$, then $$\left( {\overrightarrow b - \overrightarrow a } \right).\,\left( {\widehat k - \widehat j} \right) + \left( {\overrightarrow b + \overrightarrow a } \right).\,\left( {\widehat i - \widehat k} \right)$$ is equal to _____________.
Let $$\theta$$ be the angle between the vectors $$\overrightarrow a $$ and $$\overrightarrow b $$, where $$|\overrightarrow a | = 4,$$ $$|\overrightarrow b | = 3$$ and $$\theta \in \left( {{\pi \over 4},{\pi \over 3}} \right)$$. Then $${\left| {\left( {\overrightarrow a - \overrightarrow b } \right) \times \left( {\overrightarrow a + \overrightarrow b } \right)} \right|^2} + 4{\left( {\overrightarrow a \,.\,\overrightarrow b } \right)^2}$$ is equal to __________.
$$\overrightarrow b = - \beta \widehat i - \alpha \widehat j - \widehat k$$ and
$$\overrightarrow c = \widehat i - 2\widehat j - \widehat k$$
such that $$\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow b \,.\,\overrightarrow c = - 3$$, then $${1 \over 3}\left( {\left( {\overrightarrow a \times \overrightarrow b } \right)\,.\,\overrightarrow c } \right)$$ is equal to _____________.
$$\overrightarrow b $$ = $$\widehat i$$ + 2$$\widehat j$$ + $$\widehat k$$. If $$\overrightarrow c \,.\,\left( {\widehat i + \widehat j + 3\widehat k} \right)$$ = 8 then the value of
$$\overrightarrow c $$ . $$\left( {\overrightarrow a \times \overrightarrow b } \right)$$ is equal to __________.
with $$\overrightarrow a $$ and $$\overrightarrow b $$, $$\overrightarrow a .\overrightarrow c $$ = 7 and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, where
$$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat k$$ , then the
value of $$2{\left| {\overrightarrow a + \overrightarrow b + \overrightarrow c } \right|^2}$$ is _____.
$$\sqrt 3 \left| {\overrightarrow a + \overrightarrow b } \right| + \left| {\overrightarrow a - \overrightarrow b } \right|$$ is_____.
$$\left| {\overrightarrow a } \right| = 2$$, $$\left| {\overrightarrow b } \right| = 4$$ and $$\left| {\overrightarrow c } \right| = 4$$. If the projection of
$$\overrightarrow b $$ on $$\overrightarrow a $$ is equal to the projection of $$\overrightarrow c $$ on $$\overrightarrow a $$
and $$\overrightarrow b $$ is perpendicular to $$\overrightarrow c $$, then the value of
$$\left| {\overrightarrow a + \vec b - \overrightarrow c } \right|$$ is ___________.
$${\left| {\widehat i \times \left( {\overrightarrow a \times \widehat i} \right)} \right|^2} + {\left| {\widehat j \times \left( {\overrightarrow a \times \widehat j} \right)} \right|^2} + {\left| {\widehat k \times \left( {\overrightarrow a \times \widehat k} \right)} \right|^2}$$ is equal to____
$$\widehat i + \widehat j + \widehat k$$ and $$2\widehat i + \widehat j + 3\widehat k$$, respectively. A point 'P' divides the line segment AB internally in the ratio $$\lambda $$ : 1 ( $$\lambda $$ > 0). If O is the origin and
$$\overrightarrow {OB} .\overrightarrow {OP} - 3{\left| {\overrightarrow {OA} \times \overrightarrow {OP} } \right|^2} = 6$$, then $$\lambda $$ is equal to______.
$${\left| {\overrightarrow a - \overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a - \overrightarrow c } \right|^2}$$ = 8.
Then $${\left| {\overrightarrow a + 2\overrightarrow b } \right|^2}$$ + $${\left| {\overrightarrow a + 2\overrightarrow c } \right|^2}$$ is equal to ______.
$$\overrightarrow q = a\widehat i + \left( {a + 1} \right)\widehat j + a\widehat k$$ and
$$\overrightarrow r = a\widehat i + a\widehat j + \left( {a + 1} \right)\widehat k\left( {a \in R} \right)$$
are coplanar and $$3{\left( {\overrightarrow p .\overrightarrow q } \right)^2} - \lambda \left| {\overrightarrow r \times \overrightarrow q } \right|^2 = 0$$, then the value of $$\lambda $$ is ______.