1
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
$$\mathop {\lim }\limits_{x \to \infty } \left( {{n \over {{n^2} + {1^2}}} + {n \over {{n^2} + {2^2}}} + {n \over {{n^2} + {3^2}}} + ..... + {1 \over {5n}}} \right)$$ is equal to :
A
tan–1 (2)
B
tan–1 (3)
C
$${\pi \over 4}$$
D
$${\pi \over 2}$$
2
JEE Main 2019 (Online) 12th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral $$\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$$ loge x dx is equal to :
A
$$ - {1 \over 2} + {1 \over e} - {1 \over {2{e^2}}}$$
B
$${3 \over 2} - e - {1 \over {2{e^2}}}$$
C
$${1 \over 2} - e - {1 \over {{e^2}}}$$
D
$${3 \over 2} - {1 \over e} - {1 \over {2{x^2}}}$$
3
JEE Main 2019 (Online) 12th January Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
Let f and g be continuous functions on [0, a] such that f(x) = f(a – x) and g(x) + g(a – x) = 4, then $$\int\limits_0^a \, $$f(x) g(x) dx is equal to :
A
4$$\int\limits_0^a \, $$f(x)dx
B
$$-$$ 3$$\int\limits_0^a \, $$f(x)dx
C
$$\int\limits_0^a \, $$f(x)dx
D
2$$\int\limits_0^a \, $$f(x)dx
4
JEE Main 2019 (Online) 11th January Evening Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
The integral  $$\int\limits_{\pi /6}^{\pi /4} {{{dx} \over {\sin 2x\left( {{{\tan }^5}x + {{\cot }^5}x} \right)}}} $$  equals :
A
$${\pi \over {40}}$$
B
$${1 \over {20}}{\tan ^{ - 1}}\left( {{1 \over {9\sqrt 3 }}} \right)$$
C
$${1 \over {10}}\left( {{\pi \over 4} - {{\tan }^{ - 1}}\left( {{1 \over {9\sqrt 3 }}} \right)} \right)$$
D
$${1 \over 5}\left( {{\pi \over 4}{{-\tan }^{ - 1}}\left( {{1 \over {3\sqrt 3 }}} \right)} \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12